
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Monocular Depth Perception

Using Deep Learning

by

Sharjeel Anwar Syed

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Faculty of Engineering

Department of Electrical Engineering

2020

www.cust.edu.pk
www.cust.edu.pk
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

Copyright c© 2020 by Sharjeel Anwar Syed

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

ii

This work is dedicated to my parents especially my late mother, my wife, my

children, my brothers, my friends, my supervisor Dr. Imtiaz Taj and especially

dedicated to my mentor Dr. Fida Muhammad.

CERTIFICATE OF APPROVAL

Monocular Depth Perception Using Deep Learning

by

Sharjeel Anwar Syed

MEE-163002

THESIS EXAMINING COMMITTEE

S. No. Examiner Name Organization

(a) External Examiner Dr. Nabeel Ali Khan FU,Rawalpindi

(b) Internal Examiner Dr. M.Tahir Awan CUST,Islamabad

(c) Supervisor Dr. Imtiaz Ahmed Taj CUST,Islamabad

Dr. Imtiaz Ahmed Taj

Thesis Supervisor

December, 2020

Dr. Noor Muhammad Khan Dr. Imtiaz Ahmed Taj

Head Dean

Dept. of Electrical Engineering Faculty of Engineering

December, 2020 December, 2020

iv

Author’s Declaration

I, Sharjeel Anwar Syed hereby state that my MS thesis titled “Monocular

Depth Perception Using Deep Learning” is my own work and has not been

submitted previously by me for taking any degree from Capital University of Sci-

ence and Technology, Islamabad or anywhere else in the country/abroad.

At any time if my statement is found to be incorrect even after my graduation,

the University has the right to withdraw my MS Degree.

(Sharjeel Anwar Syed)

Registration No: MEE-163002

v

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled Monocular

Depth Perception Using Deep Learning” is solely my research work with no

significant contribution from any other person. Small contribution/help wherever

taken has been dully acknowledged and that complete thesis has been written by

me.

I understand the zero tolerance policy of the HEC and Capital University of Science

and Technology towards plagiarism. Therefore, I as an author of the above titled

thesis declare that no portion of my thesis has been plagiarized and any material

used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even after award of MS Degree, the University reserves the right to with-

draw/revoke my MS degree and that HEC and the University have the right to

publish my name on the HEC/University website on which names of students are

placed who submitted plagiarized work.

(Sharjeel Anwar Syed)

Registration No: MEE-163002

vi

Acknowledgements

First of all, I would like to thank Allah SWT for His countless blessings showered

upon me throughout my life. He has always given me the best opportunities

regardless of my weaknesses. I pray that Allah SWT allows me to be His humble

servant and blesses me and my family with steadfastness on His religion.

Then, I would express my heartiest gratitude and respect for my supervisor Dr.

Imtiaz Ahmed Taj. This work would not have completed without his guidance

and support. His strong command on my area of research and extra ordinary

problem solving skills are the key factors in completion of this thesis. I will always

remember his kind behavior while conveying the technical arguments about the

topic of research. Indeed it was an honor for me to work with such a nice, thorough

and dedicated professional.

I am thankful to all my course instructors Dr. Imtiaz Taj, Dr. Fazal ur Rehman,

Dr. Amir Iqbal Bhatti and Dr. Raza Samar in Capital University of Science and

Technology, Islamabad, for developing my knowledge base in the field of Electrical

Engineering during the course work that helped me in choosing the area of research

for Masters.

Special thanks to my mentors Dr. Fida Muhammad, Mr. Muhammad Saqib

Mansur, Mr. Saqib Wazeer, for their valuable suggestions and support during

these years. I am also thankful to Mr. Farooq Younas Bhatti and my friends for

their assistance throughout my thesis. I would also like to take this opportunity

to thank my family which includes my father, my late mother, my wife, my kids

and my brothers for their determined support in continuation of my studies. They

were always there to help me with all their abilities. Special thanks are also due

to my wife for her encouragement and moral support from the start of this thesis,

till this point.

I want to appreciate all the faculty members of Capital University of Science

and Technology, especially the teachers who taught me during my course work,

fornurturing my concepts.

vii

Abstract

Depth estimation is one of the vital tasks in Robotic navigation, Autonomous

Driving Systems, Advanced Driver Assistance Systems and Surveillance applica-

tions. Currently, LiDARs, RADARs, SONARs and Laser Range Finders are used

for most of the above mentioned practical applications. Traditionally for vision

based solutions to these tasks, areas such as Stereo Vision, Structure From Motion,

Optical Flow, Motion Parallax and Active Focus / Defocus were explored, which

always came up with bottlenecks in the existing technology. In recent past, Deep

Convolutional Neural Networks (DCNNs) have been explored by a great number

of researchers for vision based depth estimation and specifically supervised monoc-

ular depth estimation. However, there still is a need to explore light architectures,

training techniques and efficient deep learning libraries that can provide compact

and computationally efficient real-time solutions for these practical applications.

This study endeavors at addressing these challenges. In this study, for the first

time an approach is presented using a fully convolutional U-Net architecture with

Resnet34 or Resnet50 as backbone architectures, and using the Fastai’s efficient

deep learning library. The Fastai’s Dynamic U-Net was further tailored to suit

the depth estimation task. Some best training practices adopted by leading deep

learning practitioners have been used in this study which helped to produce highly

accurate results. The proposed approach gives comparable error rates with state

of the art techniques which employ computationally heavy architectures. The

proposed architecture was trained and evaluated on the renowned KITTI dataset

which contains images of outdoor scenes such as required in the above mentioned

practical applications. The network was trained on Sparse ground truth images

as originally provided with the dataset. The qualitative and quantitative results

demonstrate the effectiveness of the approach adopted in this study.

Contents

Author’s Declaration iv

Plagiarism Undertaking v

Acknowledgements vi

Abstract vii

List of Figures xi

List of Tables xiii

Abbreviations xiv

1 Introduction 1

1.1 Overview . 1

1.2 From Stereo to Monocular Vision Based
Depth Estimation . 2

1.3 Deep Convolutions Neural Networks
(DCNNs) . 4

1.4 Research Challenges . 6

1.4.1 Minimal Equipment and Time for Training 7

1.4.2 Light Architectures . 7

1.4.3 Real Time Performance on Cost Effective Platforms 7

1.4.4 Overcoming the Limitation of Popular Data Sets with Sparse
Data for Supervised Learning 8

1.5 Research Objective . 9

1.6 Contributions . 9

1.7 Thesis Organization . 10

2 Literature Review 11

2.1 Binocular Vision Approaches . 12

2.1.1 Ambiguity . 13

2.1.2 Occlusion . 13

2.1.3 Short Range . 13

viii

ix

2.1.4 High Computational Cost 14

2.1.5 Hardware Limitations . 14

2.2 Monocular Vision Approaches . 14

2.2.1 Supervised Machine Learning 15

2.2.2 Unsupervised/Semi-Supervised Machine Learning 16

2.3 Research Gap . 18

2.4 Problem Statement . 20

2.5 Summary . 20

3 Dataset,Libraries and Architecture Used 21

3.1 Dataset . 22

3.1.1 KITTI . 22

3.2 Fastai Library and Pytorch . 23

3.3 Best Training Practices in Fastai 25

3.3.1 One Cycle Training – Freezing/Unfreezing Layers 25

3.3.2 Learning Rate Finder and Discriminative Learning Rates . . 25

3.4 U-Net Architecture . 26

3.4.1 Encoder-Decoder Architecture 27

3.4.2 Resnet-34 . 30

3.4.3 Resnet-50 . 32

3.4.4 Fastai’s Implementation of Dynamic U-Net 33

3.5 Summary . 34

4 Implementation Methodology 35

4.1 Proposed Methodology . 35

4.1.1 Organizing the Dataset/Cleaning of Data 36

4.1.2 Training in Fastai . 37

4.1.2.1 Creation of Item List 37

4.1.2.2 Labelling Function for KITTI Dataset 38

4.1.2.3 Creation of Image Data Bunch 38

4.1.2.4 Data Augmentation 38

4.1.2.5 Creation of U-Net-Learner/Model for Training . . . 39

4.1.2.6 Applying Transfer Learning 40

4.1.2.7 Training Metric/Loss Function 40

4.1.2.8 Starting the Training – Fit One-Cycle 41

4.1.2.9 Hyper Parameter Setting/Tuning 41

4.2 Testing Methodology . 42

4.2.1 Evaluation Metrics . 43

4.3 Summary . 44

5 Results 45

5.1 Resnet34 . 45

5.2 Resnet50 . 53

5.3 Comparison with Different Architectures 56

5.4 Analysis . 58

x

5.4.1 Accuracy . 58

5.4.2 Computational Time . 58

5.4.3 Comparison of Resnet34 and Resnet50 in Terms of Training
Cycles . 58

5.4.4 Limitation . 58

5.5 Summary . 59

6 Conclusion and Future work 60

6.1 Conclusion . 60

6.2 Future Work . 61

A Installation of Required Frameworks 70

A.1 Installation of Anaconda Python3 70

A.2 Installation of Pytorch, Torchvision , CUDA/ cuDNN Drivers for
GPU . 71

A.3 Installation of Fastai . 73

A.4 Installation and Import of other Required Modules 74

B Labeling Function for KITTI Dataset 76

List of Figures

1.1 Stereo Triangulation for Estimating 3D Position of Object. 2

1.2 Monocular Depth Estimation using Monocular Cues. 3

1.3 Resnet50 with 50 Convolutional Layers [4]. 4

1.4 VGG-16 with 13 Convolutional, 2 Fully Connected Layers and 1
Softmax Layer[7]. 5

3.1 Showing Plot of Learning Rate Finder. 25

3.2 U-net Architecture (Example for 32x32 Pixels in the Lowest Reso-
lution). Each blue box corresponds to a multi-channel feature map.
The number of channels is denoted on top of the box. The x-y-size
is provided at the lower left edge of the box. White boxes represent
copied feature maps. The arrows denote the different operations. . . 29

3.3 A simple Resnet module with skip connections and a FC layer at
the end . 30

3.4 A Simple Resnet34 Architecture . 31

3.5 A simple Resnet50 Architecture. 31

3.6 Resnet34 Architecture in Fastai’s Dynamic U-Net Configuration . . 32

3.7 Fastai’s Implementation of Dynamic U-Net 33

4.1 Block Diagram of Proposed Methodology. 36

5.1 Resnet34 Results (10 epochs) in Dynamic Unet Configuration (with-
out sigmoid layer) From Left to Right: (a) Original RGB image, (b)
The Prediction on Validation/Test Set Images (c) Raw LiDAR Scan
Data (used for training as GT). 48

5.2 Resnet34 Results (20 epochs) in Dynamic Unet Configuration (with-
out sigmoid layer) From Left to Right: (a) Original RGB image, (b)
The Prediction on Validation/Test Set Images (c) Raw LiDAR Scan
Data (used for training as GT). 49

5.3 Resnet34 Results (30 epochs) in Dynamic Unet Configuration (with-
out sigmoid layer) From Left to Right: (a) Original RGB image, (b)
The Prediction on Validation/Test Set Images (c) Raw LiDAR Scan
Data (used for training as GT). 50

5.4 Resnet34 Results (40 epochs) in Dynamic Unet Configuration (with-
out sigmoid layer) From Left to Right: (a) Original RGB image, (b)
The Prediction on Validation/Test Set Images (c) Raw LiDAR Scan
Data (used for training as GT). 51

xi

xii

5.5 Resnet34 Results (50 epochs) in Dynamic Unet Configuration (with-
out sigmoid layer) From Left to Right: (a) Original RGB image, (b)
The Prediction on Validation/Test Set Images (c) Raw LiDAR Scan
Data (used for training as GT). 52

5.6 Resnet50 Results (10 epochs) in Dynamic Unet Configuration (with-
out sigmoid layer) From Left to Right: (a) Original RGB image, (b)
The Prediction on Validation/Test Set Images (c) Raw LiDAR Scan
Data (used for training as GT). 55

5.7 Resnet50 Results (10 epochs) in Dynamic Unet Configuration (with-
out sigmoid layer)From Left to Right: (a) Original RGB image, (b)
The Prediction on Validation/Test Set Images (c) Raw LiDAR Scan
Data (used for training as GT). 56

A.1 64-Bit Graphical Installer of Anaconda Python3. 71

A.2 Conda Install Pytorch Torchvision Cudatoolkit=10.2. 71

A.3 CUDA-Enabled GeForce and Titan Products. 72

A.4 Pytorch Installer for CPU only. 73

A.5 Fastai Installation using Pip as Package Manager. 73

A.6 Navigating Fastai Toolbox for Use in IDE. 74

List of Tables

2.1 Research Gap. 19

3.1 A Comparison of Keras with Fastai.[62] 24

4.1 Initial Hyper Parameters. 41

4.2 Final Hyper Parameters. 42

5.1 Results of Training and Validation: Resnet34 in Fastai’s Dynamic
Unet Configuration trained on KITTI dataset. 46

5.2 Comparison with State of the Art with Results of Resnet34 47

5.3 Comparison with State of the Art with Results of Resnet50 53

5.4 Results of Training and Validation: Resnet50 in Fastai’s Dynamic
Unet Configuration trained on KITTI dataset. 54

5.5 Leader Board for KITTI Data Set for Depth Prediction: Ranking
Methods from Top to Bottom Based on the SILog Error Metric. . . 57

xiii

Abbreviations

AI Artificial Intelligence

AbsErrorRel Relative Absolute Error

ADAM Adaptive Moment Estimation

ADAS Advanced Driver-Assistance Systems

ADS Autonomous Driving System

ANN Artificial Neural Network

AvgPool2D 2-Dimensional Average Pooling Layer

BatchNorm2D 2-Dimensional Batch Normalization Layer

CNN Convolutional Neural Network

Conv1D 1-Dimensional Convolution

Conv2D 2-Dimensional Convolution

CPU Central Processing Unit

CRF Conditional Random Fields

DCNN Deep Convolutional Neural Networks

ENet Efficient Neural Network

FCN Fully Convolutional Neural Network

FC Layer Fully Connected layer

GPU Graphical Processing Unit

ICNR Initialized to Convolution Neural Network Resize

IMU Inertial Measuring Unit

ImageNet Stats ImageNet Dataset’s Statistics (Mean and Variance)

Int Integer

iRMSE Inverse Root Mean Squared Error

Kwargs Key Word Arguments

xiv

xv

LiDAR Light Detection And Ranging

Lr Learning Rate

LSTM Long Short Term Memory

MAE Mean Absolute Error

MLP Multi Layer Percepton

MRF Markov Random Fields

MSE Mean Squared Error

OptRange Optional Range

O/P Output

PReLU Parametric ReLU

PNG Portable Network Graphics

ReLU Rectified Linear Unit

Resnet Residual Neural Network

RADAR Radio Detection and Ranging

RMSE Root Mean Square Error

SFM Structure From Motion

SILog Scale Invariant Logarithmic Error

SequentialEx Sequential Execution

SONAR Sound Navigation and Ranging

sqErrorRel Relative Squared Error

TPU Tensor Processing Unit

UAV Un-maned Ariel Vehicle

U-Net U-Shaped Convolutional Neural Network

VGG Visual Geometry Group

Chapter 1

Introduction

1.1 Overview

Perception is the ability to comprehend and shape impetuses received from envi-

ronment in order to understand and behave effectively within it. One of the most

significant sources of these impetuses or stimuli for us human beings is our vision

system, which comprises of over one million axons in each eye, whose function is

to capture light reflected by objects. The processing of such input use billions

of neurons in the brain to build the perception of the world we see, in a process

called vision. This powerful sense goes beyond simply capturing images, as in the

case of cameras and employs a variety of mechanisms in which shape, color, size,

movements and distances of objects are perceived.

The recognition of a location in space is vital in almost all daily activities like

navigating through a place, avoiding obstacles, catching and throwing objects,

reaching for and grasping objects etc. Humans do all these things naturally with

their ability to extract 3D structure of the physical world from their 2D retinal

images.

Depth perception has been traditionally linked to Stereopsis (i.e. perception of

scene using binocular vision). However, there is more information in a 2D image

that makes us perceive depth, such as, texture variations and gradients, color/haze

1

Introduction 2

or aerial perspective, defocus, occlusion, linear perspective, relative and familiar

size, relative height, and shadows of objects [1], [2]. This so called cue theory, is

focused in identifying 3D information (depth of the scene) from 2D images. Ac-

cording to this theory we learn the connections between these cues and the actual

depth from our accumulated experience about the spatial relations of objects in

the world.

1.2 From Stereo to Monocular Vision Based

Depth Estimation

In the field of computer vision, the reconstruction of 3D world from images has

mainly focused on creating 3D models of real objects from two or more images.

This is accomplished by first finding correspondences in two or more images (taken

from two or more view points), and then triangulating matched elements to de-

termine their position in 3D space as shown in the figure below:

Figure 1.1: Stereo Triangulation for Estimating 3D Position of Object.

Introduction 3

Recently, the problem of estimating depth from a single image has come in the spot

light, where leading researchers from across the globe have come across different

solutions to this problem. Current approaches are mainly focused on the design

of sophisticated features and levels of reasoning for accurate depth estimation by

inferring the 3D structure of the scene as good as possible.

This kind of information is essential in the development of robust guidance sys-

tems in most advanced driver assistance systems (ADAS) e.g. adaptive cruise

control, collision avoidance, lane departure warning and autonomous driving etc.

If accurate enough, estimating absolute depth from images (especially in monocu-

lar sense) can avoid their reliance on multiple sensors such as RADARs, LiDARs,

ultrasonic sensors and even stereo-camera rigs which are bulkier, power intensive

and with high computational cost (in case of stereo cameras).

Figure 1.2: Monocular Depth Estimation using Monocular Cues.

Monocular depth estimation was for the first time investigated by A. Saxena et.al

[1] in 2005, when they used Markov Random Fields (MRFs) to estimate depth from

monocular images by training their model on Make 3D dataset. The problem of

Introduction 4

Make 3D dataset was that it contained very few images (roughly 400 images) with

their ground truth depth images that were taken from LiDAR which at that time

had a maximum depth estimating range of only 80 meters. Later on, in 2014,

Eigen et.al [3] for the first time investigated monocular depth estimation based

on deep convolutional neural networks (DCNNs) on KITTI dataset. Afterwards,

there has been a surge of research in this field using DCNNs.

1.3 Deep Convolutions Neural Networks

(DCNNs)

DCNNs are a field of Deep Learning, which refers to training Neural Networks

with many hidden layers as shown in figure below:

Figure 1.3: Resnet50 with 50 Convolutional Layers [4].

Traditionally in computer vision, handcrafted features or filters were used in pre-

deep learning era for feature extraction for tasks like classification, semantic seg-

mentation etc. However, with the advent of Deep learning era and access of high

end computational capability in the form of GPUs and TPUs, deep learning based

Introduction 5

models such as deep convolutional neural networks, or DCNNs, have proven to be

a far better approach. Traditionally deep learning is not used with all the fully

connected layers for the whole neural network in computer vision tasks. Yann

Le Cunn in 1998 for the first time used the convolution operation in neural net-

works [5] leading way to convolutional neural networks. By using convolutional

neural networks it is shown that using the convolution operation, features can be

extracted with very less parameters [6]. It is explained in a simple example here.

For example, take a simple 224 x 224 x 3 image. For a simple fully connected

network with only one hidden layer with 1000 hidden units and 10 outputs, the

total parameters for this type of input (excluding biases) will be 224 x 224 x 3

x1000 + 10,000 = 150,538,000 i.e. Over 150 million parameters for only single

fully connected layered network for this type of input, as mentioned earlier. As

discussed in the section, for so many parameters, it’s difficult to get that amount

of data to prevent a neural network from over fitting. On the other hand, take

the famous VGG-16 network [7], which has 16 convolutional layers and takes the

same 224 x 224 x 3 input images. VGG-16 is shown in the figure below.

Figure 1.4: VGG-16 with 13 Convolutional, 2 Fully Connected Layers and 1
Softmax Layer[7].

Introduction 6

Even with last 2 fully connected layers of size 4096 x 4096, and with 1000 Out-

puts, the network’s total parameters are around 138 million, which is about 1.1

times less than a single layered fully connected network for 224 x 224 x 3 images

and only 10 outputs. Nowadays, even VGG-16 is considered as a classical net-

work and new fully convolutional architectures [6] have been proposed with way

less parameters and hundreds of layers but with superior performance. Further-

more, the CNN architecture is very efficient in interpreting and extracting image

information for tasks such as classification [8] or semantic segmentation [9], [10]

when compared to other non-CNN architectures. The CNN solves vision based

problems by finding low level feature representations for different objects in the

image. In convolution neural networks, it has been shown that the first layers

detect edges, then some later layers might detect parts of objects and then even

later layers may detect parts of complete objects like people’s faces, cars etc. [11].

These features are iteratively learned by the CNN during the training process and

no hand-crafted engineering is used in their extraction, which stands as a main

difference between deep learning methods and pre-deep learning era’s computer

vision methods. As mentioned in [12], as compared to fully connected networks,

convolution operations benefit from the sparse interactions, meaning kernels of

much smaller size than the input can be used to extract much less but valuable

pixels or features. Another highlight of CNNs is the property of parameter shar-

ing, which basically means that we share parameters for more than one function

of a model.Apart from the classification tasks, recently CNNs have also proved

their success for other computer vision tasks such as depth estimation [13], [14],

[15], [16], [3], [17] and semantic segmentation [18], [19], [6] that both generate

pixel-wise predictions.Despite the high performance of CNN architectures, there

are still some challenges in this field.

1.4 Research Challenges

Although there have been a surge in past few years in the field of monocular

depth perception using deep learning, there are still some issues which need to be

Introduction 7

dealt with in order to design algorithms which are suited for practical applications.

Some of these challenges are discussed below.

1.4.1 Minimal Equipment and Time for Training

Although nowadays people are training networks with thousands of layers [20]

with huge memory requirements that require dozens of GPUs/TPUs to train on,

there still is a requirement to explore such architectures and libraries that employ

techniques which reduce convergence time and are less memory intensive. Fastai

library[21] is one example which was in the headlines when young student devel-

opers of Fastai beat giants like google in a benchmark called DAWNBench, from

researchers at Stanford [22, 23]. This benchmark uses a common image classifi-

cation task to track the speed of a deep-learning algorithm per dollar of compute

power.Fastai library has proved to be one in this case and needs to be explored in

the task at hand.

1.4.2 Light Architectures

In humans we have billions of neurons that learn to accomplish routine tasks. But

for a single task a relatively small subset of these neurons are required. Neural

networks inspired from the humans tries to fulfill that gap of learning in machines.

Recently more architectures [24], [6], [25] have been introduced which produce

promising results but are quite memory intensive. There still is a need to explore

light architectures to address challenging tasks like monocular depth perception

that can be employed on less memory intensive platforms and thus are suited for

practical applications.

1.4.3 Real Time Performance on Cost Effective Platforms

For practical systems like ADAS and UAVs, low cost and light weight systems

are required which can produce real time performance with less error. Solution of

Introduction 8

above mentioned challenges leads to the final challenge in deployment of a system

i.e. Real time performance. Algorithms may use smart architectures requiring

minimal equipment for training and producing good accuracy but will be slow to

produce real time results and thus are not suited for practical applications. Thus

there is a need of smart architectures, requiring minimal memory overhead, with

less error rate and yet are Fast enough to suit real time applications.

1.4.4 Overcoming the Limitation of Popular Data Sets with

Sparse Data for Supervised Learning

Usually popular benchmark data sets like KITTI and NYU Depth are used for

monocular depth perception. NYU Depth was developed using Microsoft Kinect

platform which use illumination sensors (infrared emitter) to estimate ground truth

depth. It is however limited to only indoor scenes as the platform only measures

accurate ground truth depth for a few meters and cannot be used for training

networks that are to be employed in dynamic natural environments. For dynamic

natural environments, KITTI data set is more suited which uses Lidar sensor to

estimate ground truth depth of outdoor scenes but is limited to sparse data and

misses out information of moving objects [26].

Furthermore, only 40-50 percent of depth information exists in these sparse ground

truth images. To overcome this difficulty of acquiring completely filled ground

truth data, recently unsupervised methods [27], [16], [28] have been explored to

overcome this challenge.

Techniques like Structure From Motion (in which multiple frames of single camera

from different viewpoints are used to train the network to learn depth and ego

motion of camera) [27], [28] and Learning Reconstruction Loss (to obtain disparity

maps by using rectified stereo pair of images at training time) [16] have also been

investigated to address this problem.

However, supervised learning utilizing deep learning has proved to produce more

accurate results and needs to be explored utilizing Depth Completion of popular

data sets like KITTI.

Introduction 9

1.5 Research Objective

The research objectives of this thesis are:

• To explore Fully convolutional architectures without any fully connected

layers and with less parameters for monocular depth estimation.

• To explore an efficient library like Fastai.

• Utilizing modern best training practices and to achieve higher accuracy than

contemporary heavy architectures.

1.6 Contributions

In this research study

• For the first time Fastai’s Dynamic U-Net has been used for monocular depth

estimation on KITTI Dataset.

• Fastai’s Dynamic U-Net architecture is mainly designed for classification

tasks with the presence of a ’Sigmoid layer’ as the head of the network. In

order to regress the depth linearly, the existing head of the network was

removed and depth was regressed linearly by the final convolutional layer.

• Resnet34 and Resnet50 architectures were used as backbone architectures in

Fastai’s Dynamic U-Net, which are then compared with contemporary state

of the art heavy architectures.

• Best training practices like Transfer learning, One Cycle training, freezing

and unfreezing layers, learning rate finder and discriminative learning rates

were used during training, to achieve higher accuracy for monocular depth

perception as shown in the results.

Introduction 10

1.7 Thesis Organization

In Chapter 1 absolute depth perception using images, monocular depth percep-

tion, use of deep learning for monocular depth perception, nueral networks, net-

work components and brief challenges in the field of monocular depth perception

for practical systems are discussed. Chapter 2 deals with the background and lit-

erature review of binocular vision approaches, monocular vision approaches, use of

supervised and unsupervised/semi-supervised learning for monocular depth per-

ception. Chapter 3 discusses the popular benchmark dataset and sheds some light

on Fastai library. In Chapter 4, Implementation methodology followed is discussed

in detail, by first shedding light on the architectures used and then their imple-

mentation details. In Chapter 5 results on benchmark dataset are compared with

the state of the art and in the end in Chapter 6, conclusion, limitations and future

work is presented.

Chapter 2

Literature Review

Depth estimation utilizing camera images has inspired quite a few computer vision

researchers for many decades now. In the latter half of the 20th century, inspired

by humans, binocular or stereo vision was much used in estimating relative depth

of the scenes for predicting their 3D structure. Same techniques were utilized in

augmented/virtual reality applications [29], [30]. Stereo vision was also utilized

for small range robot navigation [31], [32], [33], [34] and short range surveillance

applications [35]. Along with stereo vision, these applications also utilized other

techniques like Structure From Motion (SFM)[36], [37], [38], Optical Flow [39],

[40], [41], [42], Motion Parallax [43], [44], [45], Active Focus/DeFocus [46], [47],

[48] and by using Coded Aperture [49]. Along with their merits, the main short

comings [28] were Short Range (In case of stereo-vision, where range is mainly

dependent on baseline i.e. separation between cameras), Heavy duty equipment

involving 2 or more cameras and mainly the High computational cost associated

with them, which usually make them incompatible for practical systems in today’s

scenario where there is a need of more compact and light weight systems with

less computational cost (ADAS, ADS, Biometric Scanners, small UAVs etc.). In

order to address these issues, Saxena et.al [1] for the first time in 2005 gave the

idea of Monocular Depth Estimation i.e. Absolute Depth estimation from single

images, using Machine Learning. They used Markov Random Fields (MRF) as the

machine learning technique for accomplishing said task. Although at that time

11

Literature Review 12

their dataset consisted of very few images and sparse ground truth data, their

work laid the foundations of monocular depth perception which is now a popular

computer vision and deep learning field. Afterwards, monocular depth estimation

was for the first time investigated by Eigen et.al [13] using Convolutional Neural

Networks (CNNs) in 2014 on the renowned KITTI and NYU datasets. Ever since,

monocular depth perception using deep learning has become the field of research

in computer vision community. The traditional Binocular Vision and current

Monocular Vision approaches are briefly discussed in next sub sections.

2.1 Binocular Vision Approaches

For more than 50 years, Binocular Vision or Stereo Vision has been extensively

studied for extracting 3D information of scene. In humans’ binocular vision, both

the eyes provide the brain with two different images and the separation between

the eyes serve as the baseline.

The visual cortex of the brain first acquire the binocular overlap (the portion of the

image information which is in common between images of both the eyes) by pro-

cessing these images from left and right eyes, and afterwards infer relative depth

using binocular disparities (the difference in image formation of objects based on

the separation of eyes), as the relative position of objects which are separated in

depth from the viewer will be different in both the eyes.

In computer vision, the same phenomena is used to infer depth, i.e. first obtain two

images from two different locations/viewpoints, and then process them together

to find correspondences (matching similar points of one image in the other) and

then infer depth of corresponding points as a function of Focal length of cameras,

Baseline (separation between the cameras) and the Disparity between correspond-

ing points, in a process of Triangulation. This is shown by the following equation

below:-

Depth =
(bxf)

d
(2.1)

Literature Review 13

where

b = Baseline

f = Focal Length

d = Binocular Disparity

However, stereo matching has its disadvantages and problems dealing with some

pixels in the image, due to a couple of main difficulties. Some typical problems

are discussed below:-

2.1.1 Ambiguity

In stereo pair of images, a point on object in the physical world is seen in one

image but is imperceptible in the other due to the horizontal separation (baseline)

between cameras and the change in perspective. Thus, it creates errors in the

depth map when an algorithm finds a matching pixel for the point which does not

exists in the other image.

2.1.2 Occlusion

In stereo pair of images, a point on object in the physical world is seen in one

image but is imperceptible in the other due to the horizontal separation (baseline)

between cameras and the change in perspective. Thus, it creates errors in the

depth map when an algorithm finds a matching pixel for the point which does not

exists in the other image.

2.1.3 Short Range

As evident from Equation 2.1, to obtain correct estimate of absolute depth for

distant objects, large baseline is necessary (which is not suited for practical appli-

cations like ADAS, ADS and as replacement of Lidars or Sonars), as the system

Literature Review 14

suffers from constant disparity problem [28], i.e. producing same disparity values

for all the distant objects. High resolution cameras can cater this problem to some

extent but at the same time they increase the computational cost to such extent

that becomes infeasible for practical applications, as discussed below.

2.1.4 High Computational Cost

When dealing with two images, the computational cost automatically doubles as

compared to purely monocular case. The processes of developing correspondences,

triangulation and the initial synchronization of images are further added to this

computational cost.

2.1.5 Hardware Limitations

As discussed above, getting correct estimates of distant objects (e.g. Upto 200m,

in the case of autonomous driving), either very large baseline is required or very

high resolution cameras (accompanied by high computational cost), rendering the

system infeasible for many practical applications.

2.2 Monocular Vision Approaches

Estimating absolute (metric) depth from images is a vital tool in a range of appli-

cations, especially in the field of robotics. While ranging sensors, such as LIDAR

and structured light sensors, provide superior depth accuracy compared to visual

methods,they are not suited for all applications.

LIDAR units are relatively big and expensive and suffer from producing sparse

depth map of the scene, while structured light sensors have poor detection range

(upto a few meters only). Cameras remain a very cost effective and compact sensor

choice for small robotic platforms, such as drones or ground robots. Traditionally,

binocular or trinocular camera arrangements are used and depth is estimated as

Literature Review 15

the inverse of image disparity. On space limited platforms, however, the baseline

of the stereo cameras may be too small to provide meaningful disparity measure-

ments beyond a few meters [50], [28].

To solve this problem mainly two types of approaches were followed, One to use

learning based methods to obtain meaningful disparity estimates by learning Image

reconstruction loss in an un-supervised manner [16] and Second to use Monocular

depth estimation based on machine learning [1], [13], [14], [51], [52], [53], [17], [10].

Estimating depth from a single image is an inherently ill posed problem as the

same input image can project to multiple plausible depths.

To address this, learning based methods have shown themselves capable of fitting

predictive models that exploit the relationship between color images and their

corresponding depth. Saxena et.al [1] were the first ones to introduce monocular

depth estimation with supervised learning.

They used discriminatively trained Markov Random Field (MRF) models to train

depth. In general these models are used as fair approximations, and the depth

prediction time is quite inefficient,taking a couple of seconds at least to compute.

Other main limitations back then was the use of dataset [54] with very few images

and sparse ground truth data.

Eigen et.al [13], [14] were the first ones to use deep learning for monocular depth

estimation using a two scale network for predicting a course and fine depth re-

spectively. Ever since then there has been a surge of work in monocular depth

estimation using deep convolutional neural networks as briefly explained in the

next sub sections.

2.2.1 Supervised Machine Learning

Supervised methods are used to optimize models based on known inputs and their

respective ground truth data (Depth maps). Presumably, supervised learning tech-

niques for monocular depth estimation is the most popular approach. Recently,

deep convolutional neural networks (DCNNs) have gained huge success in the field

of monocular depth perception. Eigen et.al [13], [14] introduced DCNNs for this

Literature Review 16

task using a two stack network. First stack was used to make a coarse global

prediction based on the entire image, and the other stack refined this prediction

locally.

A scale-invariant error was also used to help measure depth relations rather than

scale, reasoning that a large source of uncertainty for the task comes from the

overall scale. Although achieving state of the art results back then on benchmark

datasets like KITTI and NYU Depth, more recent methods [51], [16], [53], [17]

achieve far better results with improved architectures and loss functions.

DenseDepth is a much more recent method based on the paper High Quality

Monocular Depth Estimation via Transfer Learning [55]. DenseDepth relies on

transfer learning, a process that uses previous knowledge (in the form of learned

parameters by the network) derived from a learning problem (image classification

in this case) to help solve another (depth estimation) more efficiently [56] [60].

Transfer learning allowed this method to provide a simpler and modular architec-

ture with similar or even better results than other methods.Their network archi-

tecture follows an encoder-decoder structure. The encoder is where the transfer

learning occurs, specifically using DenseNet-169 pre-trained on ImageNet [57],

which is an image database for image classification and object recognition.

Having a pre-trained encoder section resulted in reduction of validation loss com-

pared to a completely random weights initialization. The decoder section is com-

posed of basic convolutional and transposed convolutional layers.

By now, various approaches, such as combining local predictions, non-parametric

scene sampling, through to end-to-end supervised learning [13], [14], [51], [52],

[53], [17], [10] have also been explored.

2.2.2 Unsupervised/Semi-Supervised Machine Learning

Supervised monocular depth perception requires vast amounts of corresponding

ground truth depth data for training, recording of which is a challenging problem.

Goddard et.al [16] introduced the idea of unsupervised monocular depth estima-

tion by replacing the use of explicit ground truth depth data during training with

Literature Review 17

easier-to-obtain binocular stereo footage.

This is done by posing depth estimation as an image reconstruction problem during

training. The intuition given was that, for a calibrated pair of binocular cameras,

if a function can be learned that is able to reconstruct one image from the other,

then the network has learned something about the 3D shape of the scene that is

being imaged.

Specifically, at training time, with access of both the left and right color images

from a calibrated stereo pair, captured at the same moment in time,instead of

trying to directly predict the depth, an attempt was made to estimate the dense

correspondence field that, when applied to the left image, would enable the network

to reconstruct the right image.Similarly, the left image can also be reconstructed,

given the right one. The model then learns to predictdis parity, which isa scalar

value per pixel. Given the baseline distance b between the cameras and the camera

focal length f, depth can then be trivially recovered from this predicted disparity

estimate using Equation 2.1. Zhou et.al [58] presented better results on KITTI

dataset by using Unsupervised learning of depth. While Goddard et.al [16] uses

stereo image pairs in training, [58] uses monocular video. [58] uses a pose pre-

diction network to warp an image given its predicted depth into the views from

the neighboring temporal frames.These reconstructed views are compared to the

training video frames with a photometric loss term. The depth and pose esti-

mation networks are trained in an unsupervised manner from this loss. Like in

[16] , however, the depth network from this work only considers a single view.K.

S. Chan [28] has argued that these single-view methods will be unable to resolve

the inherent scale ambiguity problem in monocular depth perception. They will

primarily learn implicit sizes for different objects in the training scenes to pre-

dict depth, essentially over fitting to the training environment. Thus, generalizing

poorly to new environments with previously unseen objects. K. S. Chan [28] have

shown that one potential way to generalize monocular depth estimation methods

is to utilize multiple views of the scene. They have proposed that Structure from

motion can resolve the scale ambiguity in the monocular depth estimation task to

within a scale factor of camera displacement[59], which is also relatively easy to

Literature Review 18

measure on some robotic platforms like ground rovers by using wheel encoders or

IMUs. Thus, allowing these algorithms to recover absolute depth. Deep learning

methods for monocular depth estimation have been shown to generalize better to

new scenes by learning structure from motion rather than implicit object sizes

[60], but are data intensive to train. Their work focuses on extending monocu-

lar depth estimation techniques to incorporate multiple views of the scene and

leverage motion cues in an unsupervised manner, thus enabling the estimator to

generalize to new environments well without a significant increase in the required

inputs for training. Their work finds that multi view networks achieve compara-

ble performance to single view networks and generalize to certain test datasets

better than single view networks. Although these methods have enjoyed success,

but as discussed in section 2.1, they will tend to suffer one of the fundamental

problems of Stereo vision i.e. Occlusion, by matching occluded pixels (in estab-

lishing correspondences), which do not exist in other images thus increasing the

error rate.

2.3 Research Gap

As discussed earlier, the most investigated technique for visual depth estima-

tion had been stereo vision which had its shortcomings like ambiguity, occlu-

sion,requirement of high computational cost and requirement of large baseline

for estimation of depth at longer ranges. In past, some methodologies had been

discovered for monocular depth estimation without using any machine learning

techniques, but these techniques didn’t get much recognition due to being slow

and practically infeasible. Moreover, in recent past many techniques have been

proposed for monocular depth estimation based on supervised and semi-supervised

machine learning algorithms. Currently, the latter has been the focus of research

in research community. The research Gap of the literature review discussed in the

previous section is shown by the following table:

L
iteratu

re
R

eview
19

Table 2.1: Research Gap.

Technique Applicability & Techniques Limitation and Drawbacks

Augmented/Virtual Reality [33], [34] Ambiguity:find correct correspondence for pixel of same colors

Robot Navigation [35], [36], [37], [38]. Occlusion: Finding a matching pixel for a

Stereo Vision point which doesn’t exist in the image. [32]

Short Range: Constant Disparity Problem. [32], [54]

Short Range Surveillance [39]. High Computational Cost [32]

Hardware Limitation [32]

Monocular Vision-without Optical Flow [43], [44], [45], [46]. Short Range [32]

Learning based Approaches Motion Parallax [47], [48], [49]. Poor Accuracy

Active Focus/Defocus [50], [51], [52]. Real Time Performance

Coded Aperture [53] Hardware Complexity

Monocular Vision-Learning MRF [1] Less Training Data & Sparse Depth Data [5], [68]

based Approaches CNNs [1], [3], [5], [6], [14], [55], [56], [57]. Handling High resolution Input Data,

(Supervised Learning) Accuracy, Performance / Computational Cost,

Training Data, Data Bias and Generalization [68]

HYBRID [3] Complex Architecture

Monocular Vision-Learning Left Right Consistency [62] Primarily Learn Implicit Sizes of Objects [32]

based Approaches Poor Generalization Ability [32]

(Semi-Supervised” Learning) Depth & Ego Motion form Video [16] . Primarily Learn Implicit Sizes of Objects [32]

Poor Generalization Ability [32]

Prone to Two Stages of Error

Literature Review 20

2.4 Problem Statement

In this research study, fully convolutional architectures with lesser parameters are

explored utilizing Transfer learning, along with the use of an efficient library (Fas-

tai) to address the challenges of Training with less memory overhead and obtaining

higher accuracy than contemporary heavy architectures with more parameters.

2.5 Summary

Literature review was discussed in this chapter, highlighting the inherent short-

comings of stereo vision, the advent of monocular depth estimation techniques

and recent surge in research on monocular depth estimation using deep convolu-

tion networks. Research gap was presented to show the shortcomings of existing

and previous schemes.

In the coming chapter, the dataset used in this research work, the use of best

training practices in an efficient framework and the architecture used for training

is discussed

Chapter 3

Dataset,Libraries and

Architecture Used

This chapter sheds light on the dataset used in this research work along with the

framework utilized for training and finally the architecture used for training on

dataset.

Section 3.1 deals with the description of KITTI dataset which was used in this

research study, by discussing the size of training and validation/test set, the lo-

cations (outdoor environments) where the images/scenes were captured, size and

format of images in the dataset and how they were used for training.

Section 3.2 and 3.3 discusses the Fastai library, which is the framework used for

training in this research work.

A comparison of Fastai with keras is also being made to show the effectiveness of

this framework.

It also highlights the use of best training practices undertaken by deep learning

practitioners which are incorporated in Fastai by default.

Finally section 3.4 discusses the U-Net architecture used for training on KITTI

dataset for monocular depth perception. It also highlights the differences between

the initially proposed U-Net architecture and Fastai’s Dynamic U-Net architecture

and how it was tailored to suit the depth regression task.

21

Dataset and Libraries 22

3.1 Dataset

For the task of single image depth prediction, the model was trained on the

renowned challenging KITTI vision Benchmark suite. The KITTI dataset [26]

includes images and their corresponding ground truth depths of outdoor scenes

taken at different intervals and in different outdoor environments. In the collec-

tion of this dataset a Volkswagen hatchback was mounted with 2 stereo camera

rigs (one stereo pair of cameras was used to capture color images and the other for

capturing grayscale images) and a velodyne laser scanner (for capturing absolute

of the scene).

The dataset consists of left and right images of both the color and grayscale stereo

pair of cameras, as well as their ground truth depth data obtained from Lidar

scans. The KITTI vision Benchmark suite also consists of annotated depth maps

for semantic segmentation as well as IMU data (given as text files for each image)

for visual odometry. This thesis is restricted to supervised depth prediction task,

so only images with their ground truth depth data was used. Description of this

dataset is explained in the following sub-section.

3.1.1 KITTI

The depth prediction evaluation benchmark of KITTI dataset consists of over 93

thousand images of outdoor scenes with their corresponding ground truth depth

maps. All the 134 scenes from the “city,” “residential,” “road”, “campus” and

“person” categories of the raw data were used in this thesis. The RGB images

are originally 1224 x 368, and down sampled to 224 x 224 to form the network

inputs. Roughly 86 thousand images are used for training and 14224 images for

validation. Evaluation metrics are also provided for the purpose of single image

depth prediction for KITTI dataset. The evaluation table provided by the dataset

[26] ranks all methods according to square root of scale invariant logarithmic error

(SILog).

Ground truth depth maps in KITTI dataset were acquired by accumulating 3D

Dataset and Libraries 23

point clouds from a 360 degree Velodyne HDL-64 Laser scanner and a consistency

check using stereo camera pairs. Depth maps (annotated and raw Velodyne scans)

are saved as uint16 PNG images. A 0 value indicates an invalid pixel (i.e., no

ground truth exists). For training, the depth for a pixel was computed in meters

by converting the uint16 values to uint8 by dividing it by 256, as shown in equation

3.1:

disp(u, v) =
((float)I(u, v))

256.0
; (3.1)

valid(u, v) = I(u, v) > 0; (3.2)

Where; I(u,v) is the ground truth depth image and u,v correspond to pixel indices.

Both left and right RGB cameras were used during training, but were treated as

un associated shots. The training set included almost 48K unique images and

using left and right images made a total of 85898 images in training set.

3.2 Fastai Library and Pytorch

Among other frameworks in Python for deep learning like Tensorflow, caffe’ and

keras, Pytorch is also a deep learning framework of Python language, which has

been developed and maintained by Facebook researchers. In this thesis we have

trained Pytorch models using the Fastai library. The Fastai library uses best train-

ing practices employed by competition winners and thus the training is simplified.

It provides “out of the box” solutions for specifically four applications namely

tabular, vision, text and collab (collaborative filtering) models. It came to lime-

light when according to MIT Tech review , Students from Fast.ai, created an AI

algorithm that outperformed code from Google’s researchers, as measured using

a benchmark called DAWNBench, from researchers at Stanford. Some very inter-

esting functionalities like Leslie Smith’s [61] Learning Rate Finder and One Cycle

Dataset and Libraries 24

Training are also provided in this library which at the moment is not provided in

the contemporary libraries like Keras, Caffe etc. As here we are only interested

in the vision application, so we will only discuss support provided by Fastai for

vision i.e. in Fastai.vision module.

A simple example in terms of Fastai’s performance is depicted by the table 3.1.

Table 3.1, shows Fastai’s performance in terms of speed and accuracy, on Oxford-

iiit-dataset (dataset for classification of Cats and Dogs breeds) [62], with respect

to Keras, which right now is the only other language which makes deep learning

easy to use.

Table 3.1: A Comparison of Keras with Fastai.[62]

Performance metrics Fastai(Resnet34) Fastai(Resnet50) Keras

Line of Codes(excluding imports) 5 5 31

Stage 1 Error 0.70% 0.65% 2.05%

Stage 2 Error 0.50% 0.50% 0.80%

Test Time Augmentation Error 0.30% 0.40% N/A

Stage 1 Time 4:56 9:30 8:30

Stage 2 Time 6:44 12:48 17:38

It is perceptible from table 3.1 that Fastai outperforms Keras in all respects i.e.

accuracy, time and lines of code. e.g. In terms of Lines of code, Fastai requires

only 5 lines, whereas, keras requires 31 lines of code, which means that in Keras,

you need to set much of the hyper-parameters by yourself, where on the other

hand, Fastai sets these hyper parameters according to the best modern practices.

This fact is highlighted in the increased accuracy of results for Stage-1 and Stage-2

error, as shown in the above figure.

Similarly use of best modern practices in Fastai also result in quick convergence

time as also highlighted in table 3.1. Time required for Stage-2 training for Fastai

is almost 3 times less than Keras.

Dataset and Libraries 25

3.3 Best Training Practices in Fastai

Few best modern practices are used by Fastai during training. Some of them are

described below in the sub-sections:

3.3.1 One Cycle Training – Freezing/Unfreezing Layers

One-Cycle Training was introduced by [61], and has been used in Fastai library

extensively. In One-Cycle training, we train the network with some learning rate

(usually high, default is 0.003).

3.3.2 Learning Rate Finder and Discriminative Learning

Rates

One of the exciting technique presented in Fastai is the use of Learning Rate

Finder. It is used to select the best learning for the model by ‘competition winners’

(who spent a lot of time in hyper parameter tuning to achieve the lowest error). It

is done in Fastai by first providing different learning rates during training of some

batches of the training set. Resultantly, the losses are plotted for these learning

rates. The point from where the losses shoot (almost exponentially), is selected

and we move ten step backwards, i.e. if the losses shoot at 1e-2, then we will move

to 1e-3. This is selected as the upper limit of learning. This is shown in the figure

below, taken from training KITTI Dataset.

Figure 3.1: Showing Plot of Learning Rate Finder.

Dataset and Libraries 26

As shown in the figure 3.1, a red box is marked on the region of interest i.e. the

value of learning rate from where the losses shoot abruptly (1e-2.5) to ten step

backwards (1e-3.5), as marked by red circles and intersection lines. It can also

be seen in the figure above from the yellow highlighted box, that only 76 batches

(of size 32 images) were used for subject purpose. As discussed above, this value

of learning rate (1e-3.5 in the above example), is taken as the upper bound of

learning rate. The lower bound is selected as the same learning rate used for One-

Cycle training, the default is 0.003. From this we come to Discriminative Learning

Rates.

The Discriminative Learning Rates are defined as providing different learning rates

to different sets of layers of model. This is done by slicing the learning rates

between Upper and Lower bound, provided in the fit function for training the

model. The number of slices (5, 10 etc.) depends on the depth of the model and

is done automatically by the Fastai library. The intuition behind this scheme is

that usually the lower layers require less learning rate value as compared to upper

layers of the network, especially in the context of Transfer learning, where the

lower layers are assumed to be already near a global minima.

In this way, Fastai library tries to provide optimal learning rates to different sets

of layers of the network. Thus Fastai has shown to achieve quick convergence and

better accuracy as compared to contemporary frameworks, as already shown in

Table 3.1.

3.4 U-Net Architecture

The typical use of convolutional networks had mostly been on classification tasks,

where the output to an image is a single or few class labels. However, in many

visual tasks,such as image segmentation, the desired output should include local-

ization, i.e., a class label is supposed to be assigned to each pixel. In case of

monocular depth estimation considered in this research study, this pixel-wise lo-

calization can be seen as pixel-wise depth regression (where the final layer will

perform pixel-wise regression instead of classification). Thus models suited for

Dataset and Libraries 27

such pixel-wise localization can better fit to this application as well.

Fully Convolutional Networks (FCN) architecture for semantic segmentation (and

spatially dense prediction tasks) were initially proposed by Long et. al [6]. They

achieved state of the art segmentation of PASCAL VOC and NYUDepth V2.

Their architecture was further improved in U-Net architecture by Ronneberger

et.al [24].The main idea in Long et. al’s [6] work is to supplement a usual con-

tracting network (the encoder part) by successive layers (the decoder part), where

pooling operators get replaced with up sampling operators.

Hence, these layers in decoder part of the network increase the resolution of the

output. In order to localize, high resolution features from the contracting path

are combined with the up sampled output i.e. by concatenating the high reso-

lution feature maps (activation maps after passing through the activation layer)

in the encoder part of network, with the up sampled output in the decoder part.

Afterwards, in order to let the model learn a more precise output based on this

information, a convolution layer is applied (to this up sampled output which was

combined with the high resolution feature maps of encoder part).One important

difference in U-Net architecture from the FCN architecture, is that in U-Net ar-

chitecture, in the up sampling part there are a large number of feature channels.

These large number of feature channels allow the U-Net architecture to propagate

context information to higher resolution layers. As a consequence,the expansive

path (decoder part of network) is more or less symmetric to the contracting path

(encoder part of network), and yields a u-shaped architecture. The network does

not have any fully connected layers.

3.4.1 Encoder-Decoder Architecture

The network architecture presented in [24], is illustrated in Figure 3.2. It is an

encoder-decoder type of architecture, which consists of a contracting path (left

side) and an expansive path (right side). The encoder part follows the typical

architecture of a convolutional network. In Fastai a slightly different U-Net archi-

tecture is used, namely Dynamic U-Net.The original U-Net architecture mentioned

Dataset and Libraries 28

in [24], consisted the application of un padded 3 x 3 convolutions applied twice,

each followed by a ReLU activation, followed by down sampling step in which a 2

x 2 max pooling operation with stride 2 is used. A total of four down sampling

steps were proposed in [24] and number of feature channels are doubled at each

down sampling step.In the decoder part each step consists of an up sampling of

the feature map followed by a 2 x 2 convolution (up-convolution or Transposed

convolution) that halves the number of feature channels, a concatenation with the

correspondingly cropped feature map from the encoder part, and two 3x3 con-

volutions, each followed by a ReLU. At the final layer a 1x1 convolution is used

to map each 64-component feature vector to the desired number of classes/Out-

puts.In a typical network shown in the paper [24], with input of 572 x 572, a total

of 23 convolutional layers were used. However, it is worth mentioning here that

the backbone architecture in the contraction part of U-Net architecture can be

any architecture, depending upon the input size of images.For example, Resnet18,

Resnet34and Resnet50 can be easily used for input size of 224 x 224, but when

using Resnet101 as backbone architecture for input image size of 224 x 224, the

contraction part is extended beyond 1-pixel in order fit-in the desired architecture

(While implementing in Fastai, an error pops up for the same reason as network ar-

chitecture doesn’t fit the input size).The Fastai’s dynamic U-Net implementation

can be seen in Figure 3.6 and Figure 3.7, using backbone architectures of Resnet34

and Resnet50, respectively, in the encoder part. The differences in [24] and Fas-

tai’s dynamic U-Net implementation can be seen when comparing Figure 4.1 with

Figures 3.6 and 3.7. The first difference is the filter size and number of convolution

layers at the very start before the max-pooling operation. In Fastai’s Dynamic

U-Net , only one convolution layer is applied with a filter size of 7x7, stride 2 and

a padding of 3 x 3, as compared to two un padded 3x3 convolutions applied in [24],

before the max-pooling operation.Secondly, in [24] all the convolutions applied are

un padded convolutions as perceptible in figure 3.2, from the reduced spatial size

of feature maps after every convolution layer, whereas,in Fastai’s dynamic U-Net,

mostly all the convolutions applied are padded convolutions.The 3rd prominent

difference is the application of Batch norm layer after almost every convolution

Dataset and Libraries 29

layer in Fastai’s dynamic U-Net implementation, which is absent in the [24]. The

4th main difference is in the decoder part, where up sampling is done using pixel

shuffle ICNR with a factor of 2. And the 5th difference is in the architecture design

of the decoder part as can be seen in figures 3.6 and 3.7.

Figure 3.2: U-net Architecture (Example for 32x32 Pixels in the Lowest Reso-
lution). Each blue box corresponds to a multi-channel feature map. The number
of channels is denoted on top of the box. The x-y-size is provided at the lower
left edge of the box. White boxes represent copied feature maps. The arrows

denote the different operations.

The following sections shed some light on the Resnet architectures used in our

application. U-Net models for each of the Resnet34 and Resnet50 architectures

are shown diagrammatically in sections 4.1.2 and 4.1.3, respectively.

Dataset and Libraries 30

3.4.2 Resnet-34

A Resnet module shown in figure 3.3, consists of skip connections and has proven

to be a ground breaking architecture when training deep neural networks. It caters

for the problem of vanishing and exploding gradients in deep neural networks using

these feed forward or skip connections.Resnet34 and Resnet50 architectures (with-

out U-Net configuration) are shown in figure 3.4 and 3.5, respectively.Whereas,

figure 3.6, shows the Resnet34 architecture in U-Net configuration, in which the

encoder part is a pre-trained model on Imagenet. The total trainable parameters

for resent34 in dynamic U-Net configuration are 41,405,588 (approximately 41.4

million).As highlighted in [5], for depth regression, the depth should be ’linearly’

regressed by the network. However, the Fastai’s Dynamic U-Net architecture (with

any backbone architecture like Resnet18, Resnet34, Resnet50, Resnet101 e.t.c) is

mainly designed for classification tasks with a final ’sigmoid layer’ as the head of

the network.To suit the depth regression task at hand, this last sigmoid layer was

removed and depth was regressed linearly by the final convolutional layer.

Figure 3.3: A simple Resnet module with skip connections and a FC layer at
the end

Dataset and Libraries 31

Figure 3.4: A Simple Resnet34 Architecture

Figure 3.5: A simple Resnet50 Architecture.

Dataset and Libraries 32

Figure 3.6: Resnet34 Architecture in Fastai’s Dynamic U-Net Configuration

3.4.3 Resnet-50

Resnet50 was also used for training the KITTI Dataset. The Resnet50 architecture

in the U-Net configuration is shown in figure 3.6. As highlighted in Chapter

5 (Results), the Resnet50 architecture produced superior qualitative results as

compared to Resnet34. The total trainable parameters for resent50 in dynamic

U-Net configuration are 342,019,412 (approximately 342.01 million). As discussed

in 4.1.2, the last sigmoid layer of Fastai’s Dynamic U-Net was removed and depth

was regressed linearly by the final convolutional layer.

Dataset and Libraries 33

Figure 3.7: Fastai’s Implementation of Dynamic U-Net

3.4.4 Fastai’s Implementation of Dynamic U-Net

The U-Net learner was built on using the data bunch and backbone architec-

ture (Resnet34, Resnet50). The model used is a Dynamic U-Net. In Fastai, the

Dynamic U-Net module builds a dynamic U-Net from pre-trained backbone archi-

tecture. The main differences between Fastai’s Dynamic U-Net and the original

U-Net proposed in [24] have already been described in section 4.1.1.

Class Dynamic U-Net DynamicU −Net(encoder : Module, n classes :

int, img size : Tuple[int, int] = (256, 256), blur : bool = False, blur final =

True, self attention : bool = False, y range : OptRange = None, last cross :

bool = True, bottle : bool = False, ∗∗kwargs) :: PrePostInitMeta :: SequentialEx

This U-Net architecture has two parts – One is the encoder which can be a pre-

trained model and second is the decoder part which will have the final output of

user defined classes (in depth estimation’s case, an output image of reasonable res-

olution as compared to input image. ‘blur’ is used to avoid checkerboard artifacts

Dataset and Libraries 34

at each layer, ‘blur-final’ is specific to the last layer. ‘self-attention’ determines

if we use a self attention layer at the third block before the end. If ’y-range’ is

passed, the last activations go through a sigmoid re scaled to that range. ’last-

cross’ determines if we use a cross-connection with the direct input of the model,

and in this case bottle flags if we use a bottleneck or not for that skip connection.

3.5 Summary

In chapter 3, the peculiarities of KITTI dataset were discussed along with the

description of how to use this dataset during the training process. The benefits of

using an efficient framework/library were also discussed, which incorporates the

modern best training practices like One-Cycle training, learning rate finder and

use of discriminative learning rates. Finally the U-Net architecture is discussed

and how it suits the pixel-wise depth regression task. The use of Fastai’s Dynamic

U-Net architecture, its difference with the initially proposed U-Net architecture

and how it was tailored to suit depth regression task was also discussed.

The coming chapter discusses the proposed training methodology by highlighting

the setting up of KITTI dataset, its cleaning and labelling process, the formation

of Image data bunch, the data augmentations and normalization performed on

dataset, the initial and final Hyper-parameters setting and tuning. It also discusses

the loss function used for backpropagation and testing/evaluation metrics during

the testing phase.

Chapter 4

Implementation Methodology

This Chapter deals with the implementation methodology, starting from the net-

work architecture utilized in this work to network training and testing methodology

implemented. In section 4.1, the network training with Sparse ground truth data

is discussed along with the Training methodology (including data augmentation).

Section 4.2, finally discusses the Testing methodology and evaluation metrics used.

4.1 Proposed Methodology

How the model was trained from scratch on KITTI dataset is discussed in this

section. Starting from organizing the dataset for use and cleaning of data, training

in Fastai is discussed step-wise moving from creation of an item list, labelling

function used for KITTI dataset, creation of Image Data Bunch and creation of

U-Net-learner, showing how data augmentation and transfer learning is done in

Fastai.

At the end of this section, the training metric/loss function and Hyper-parameter

settings used for the application is discussed, followed by how finally the training

process starts by using One-Cycle training and how Hyper-parameters tuning is

performed. The block Diagram of this training methodology is shown below:

35

Implementation Methodology 36

Figure 4.1: Block Diagram of Proposed Methodology.

4.1.1 Organizing the Dataset/Cleaning of Data

Organizing the dataset for use is one of the foremost tasks before any model can

be trained on it.The Eigen split [13], [14] for KITTI dataset was not used in this

thesis, in which only 56 scenes from the “city”, “residential”, and “road”categories

of the raw data were used (28 scenes were used for training and 28 scenes were for

validation/testing).Instead around 85k images of KITTI dataset have been used

for training, which come from 134 scenes of all 5 categories of the raw data namely:

“city”, “residential”, “campus”, “road” and “person”.However, the KITTI dataset

also provides the same number of grayscale images for these 5 categories, which

were not in this thesis. Both the left and right images of the stereo pair of images

of the scenes were used. The same test set as provided by KITTI Benchmark suite

for depth prediction have been used in this thesis, which consists of around 14224

images. The image IDs of depth images start from 5 (i.e. 0000000005.png), as the

depth estimation algorithm (from velodyne laser scanner) required accumulation

of 11 frames (±5 around the current frame). So, depth images for the first 5 and

the last 5 images of the stereo pair of RGB images do not exist in the raw data. In

order to align/match the RGB training images with their corresponding ground

truth images (so that proper labelling of each training image is done), these first

5 and last 5 images of both the left and right cameras were manually deleted in

all the 134 scenes. Otherwise, an error would pop up while labelling the item list.

Implementation Methodology 37

4.1.2 Training in Fastai

Training of deep CNNs in Fastai simply means that you have a dataset of images

in which both the Training and test sets along with their ground truth labels

(ground truth depth images in this case) are present. In the start, a deep CNN

architecture is selected. Then an objective function is defined which is also called

a loss function or a training metric which calculates error / loss in the forward pass

i.e. all the training images are put to the network as input (in batches) and the

output thus obtained is compared with their corresponding ground truth labels

(ground truth depth images in this case), as per the loss function criteria. The

error calculated in the forward pass is then back propagated through the network

in the backward pass and the training process continues until the number of epochs

defined has reached.But by looking at this training process step-wise in Fastai, it

simply means that first make an Image Data Bunch i.e. simply make a Data object

of all the training and validation/test set images along with their ground truth

labels. This usually consists of two steps. In the 1st step an item-list is created,

which is simply a collection of all the training and test set images.Then in the

2nd step, these training and test set images are assigned to their corresponding

ground truth labels in a step called labelling by using a labelling function.During

the creation of Image Data Bunch, the data augmentation (transformations) is

also defined which is required to be performed in the training process, along with

the input size of images to be put to the network (and some other fine details).

After creation of Image Data Bunch, the network architecture along with all the

hyper-parameters and the loss function in a learner object (cnn-learner or U-Net-

learner) is defined, followed by the commencement of training process. All these

processes are explained step-wise in the following sub-sections.

4.1.2.1 Creation of Item List

Suppose that the dataset is stored in a folder named ‘KITTI Dataset’, the ad-

dress of which is stored in a path variable“path”. This main folder(named as

‘KITTI Dataset’)then further contains images in different subfolders for training

Implementation Methodology 38

and validation (Training set images are present in the folder named ‘training’ and

test set images are present in the folder named ‘validation’.In Fastai, in order to

make an ‘item list’ of images present in the main folder of KITTI Dataset, fol-

lowing line of code will be used. item list = ImageImageList.from folder(path,

extensions=[’.png’]).split by folder(train= ‘training’, valid= ‘validation’)

4.1.2.2 Labelling Function for KITTI Dataset

As discussed, once an item list has been created, the next step is to label this

item listi.e., label the images present in the item list. This labelling process is

simply a step in which all the Training and test set images will be assigned with

their corresponding ground truth labels (which in our case will be Depth Images),

by using a labelling function. This is simply done by the following line of code:

itemlist-labeled = itemlist.label-from-func(Labelling-Function);

4.1.2.3 Creation of Image Data Bunch

Once the labelling process is finished, we are finally ready to make the Image

Data Bunch, in which all the transformations required for data augmentation, size

of the input images, Batch size and normalization techniques are defined for the

already labelled item list, (defined in the previous section as “itemlist-labeled”).

This is accomplished by the following lines of code: bs = Batch-Size (e.g., 64,

32, 16, 8, 4, 2, 1 etc.) data-train = (itemlist-labeled.transform(tfm-y = True,

size=(224,224)).databunch(bs=bs).normalize(imagenet-stats))

4.1.2.4 Data Augmentation

Data augmentation was already discussed in section 3.2.5. While creation of Image

Data Bunch, we specify all the transformations / data augmentations, that need

to be performed on our data set. For KITTI dataset, 4 transformations were

performed, Scaling, Flips, Color and Translation. As argued by Eigen et.al [13],

Implementation Methodology 39

[14], image scaling and translation do not preserve the world-space geometry of the

scene. This is easily corrected in the case of scaling by dividing the depth values

by the scale ’s’ (making the image ’s’ times larger effectively moves the camera ’s’

times closer). Although translations are not easily fixed (they effectively change

the camera to be incompatible with the depth values), they found that the extra

data these translations provided benefited the network. The other transforms, flips

and in-plane rotation (performed on NYU V.2 dataset by Eigen et.al [13], [14]),

are geometry-preserving. Following parameters were used for data augmentation:

• Scale: Input and target images are scaled by s− [1, 1.05], and the depths are

divided by s.

• Translation: Input and target are randomly cropped to the sizes of 224 x

224.

• Color: Input values are multiplied globally by a random RGB value c −

[0.9, 1.1], i.e. between 0.8 and 1.2.

• Flips: Input and target are horizontally flipped with 0.5 probability.

These are the only transformations considered suitable by many researchers [13,29]

for monocular depth estimation task.

4.1.2.5 Creation of U-Net-Learner/Model for Training

For full image pixel-wise regression, a U-Net-learner will be needed, which creates a

U-Net architecture from any backbone pre-trained architecture. Here, the training

methodology followed is shown step-wise.Creation of U-Net-learner is simply done

by using following lines of code in our case: arch = models.Resnet34 def create-

gen-learner(): returnU-Net-learner(data-train, arch, wd=wd, blur=True, norm-

type=NormType.Weight,self-attention=True, y-range=y-range, loss-func=loss-gen,

metrics=[absErrorRel-1, sqErrorRel, RMSE, SILog, iRMSE])model = create-gen-

learner() Fastai has different pre-trained models, namely Resnet18, Resnet34,

Implementation Methodology 40

Resnet50, DenseNet, XResnet-etc. These are used as the backbone architectures

in the contraction part of the U-Net architecture. These pre-trained models leads

to the concept of transfer learning, which is explained in the next sub-section.

4.1.2.6 Applying Transfer Learning

The cnn-learner method or Dynamic U-Net learner method in Fastai, is used

to fetch a pre-trained model for transfer learning. As discussed in the previous

sub-section that in Fastai, we can use Resnet18, Resnet34, Resnet50, DenseNet,

XResnet etc as backbone architectures in the Dynamic U-Net-learner. All these

models had been pre-trained on ImageNet. One just needs to pass the required

architecture (models.Resnet34, models.Resnet50 etc.) in the ‘arch’ argument of

the U-Net-learner, and select ‘pre-trained = True’ for selecting the pre-trained

model of backbone architecture. The same was done in this research work.

4.1.2.7 Training Metric/Loss Function

Training Metric commonly known as the loss function, is the metric which cal-

culates the loss at the final output layer of the network between the predicted

output and the ground truth used for training. The gradient of the loss function

w.r.t. the network weights is also computed at the output and is then sent back

through the network via back propagation. Here, the Scale Invariant Error as the

training metric in this thesis. Scale Invariant logarithmic error was initially used

by Eigen et.al [13], [14] both as a training and evaluation loss for their network.

It was also adopted by KITTI benchmark suite [26] as the main evaluation metric

for ranking different methods/ submissions. Eigen et.al [13], [14] argued that the

global scale of a scene is a fundamental ambiguity in depth prediction and much

of the error accrued using element wise metrics may be explained simply by how

well the mean depth is predicted. They explained from the example that Make

3D trained on NYUDepth obtains 0.41 error using RMSE in log space. However,

by only substituting the mean log depth of each prediction with the mean from

Implementation Methodology 41

the corresponding ground truth reduces the error to 0.33, a 20 percent relative

improvement.Likewise, for their system, these error rates were 0.28 and 0.22, re-

spectively. They argued that thus, just finding the average scale of the scene

accounts for a large fraction of the total error. Motivated by this, they used a

scale-invariant error to measure the relationships between points in the scene, ir-

respective of the absolute global scale. For a predicted depth map y and ground

truth y’,each with n pixels indexed by i, they defined the scale-invariant mean

squared error (in log space) as:

4.1.2.8 Starting the Training – Fit One-Cycle

After creation of U-Net-learner and model for training, finally, we are ready to

start the training process. This is accomplished by using following line of code:

model.fit-one-cycle(1, pct-start=0.8)

Here, the learning rate or differential learning rates can be specified in the ar-

guments of ‘.fit-one-cycle’. The fit one-cycle training technique was discussed in

above section and has proved to be amongst the best training practices in the past

3 years.

4.1.2.9 Hyper Parameter Setting/Tuning

Following hyper parameter setting were selected initially;

Table 4.1: Initial Hyper Parameters.

S.no Hyper Parameters Values

1 Learning Rate 1e-3 (1-5 Epochs)

2 Momentum [0.95, 0.85, 0.95]

3 Weight Decay Rate 1e-3

4 Batch Size 32 (Resnet34),8 (Resnet50)

5 Image Size during Training 224x224

Implementation Methodology 42

The learning rate was selected by using learning rate finder, whereas default values

of momentum and weight decay rate were selected as shown above. These were

further tuned by observing the output of each set of training cycle and by using

the learning rate finder before each set of epochs/training cycle. The final hyper

parameters setting are shown below.

Table 4.2: Final Hyper Parameters.

S.no Hyper parameters Values

1 Learning Rate(Resnet34) 1e-3 (1-5 Epochs), 1e-5 (6-15 Epochs), 1e-6 (16-50 Epochs)

2 Learning Rate(Resnet50) 1e-3 (1-5 Epochs), 1e-4 (6-10 Epochs), 1e-6 (11-20 Epochs)

3 Momentum [0.975, 0.93]

4 Weight Decay Rate 1e-4

5 Batch Size 32 (Resnet34), 8 (Resnet50)

6 Image Size during Training 224x224

By monitoring the values of training error, higher values of momentum were se-

lected to avoid error getting stuck in a local minima. It was observed that by

selecting these values of Hyper-parameters, abrupt changes in the training loss

and validation metrics were avoided.

4.2 Testing Methodology

In test phase, the trained convolutional neural network is made to see images

which were not used during the training phase. Hence, the network is made to

estimate error/loss on previously unseen images. The error/loss thus obtained is

called validation loss. As during the test phase no more training is meant, so the

validation loss is not back propagated. The validation loss is estimated by loss

function / training metric. So here, the validation loss is obtained using Scale

Invariant Error which was used as the training metric. However, other evaluation

metrics can also calculated on this test set. These metrics are only applied to

Implementation Methodology 43

the test set and not on training set. In this thesis, same 4 metrics were used

as proposed by Eigen et.al [13], [14]. Same evaluation metrics are also used as

reference for the leader board by KITTI Benchmark suite [26]. These metrics are

further discussed in detail in the following section. For KITTI, a 14224 no of

images are used in the test set. A separate test set of 500 images is also provided

for submitting results on [26]. In this work, both the Training and Validation was

performed in a single step as our Image Data Bunch was constructed in such a way

that it consisted of both the Training and test sets along with their corresponding

ground truth images. Although, the Testing or Validation step can be performed

separately in Fastai.

4.2.1 Evaluation Metrics

As discussed earlier, 4 evaluation metrics were used, namely Relative Squared

Error, Relative Absolute Error, Root Mean Squared error, Inverse Root Mean

Squared Error and Scale Invariant Logarithmic Error. The brief description of

these error metrics is given below:

• SILog: Scale invariant logarithmic error [log(m)∗100]

D(y, y∗) =
1

n

n∑
i=1

d2i −
1

n2
(

n∑
i=1

di)
2 di = logyi − logy∗i (4.1)

• sqErrorRel: Relative squared error (percent)

1

| T |
∑

yεT || y − y∗ ||2 /y∗ (4.2)

• absErrorRel: Relative absolute error (percent)

1

| T |
∑

yεT | y − y∗ |2 /y∗ (4.3)

Implementation Methodology 44

• RMSE: Root Mean Square Error

√
1

| T |
∑

yεT || y − y∗ ||2 /y∗ (4.4)

• RMSE: Root Mean Square Error

1√
1
|T |

∑
yεT || y − y∗ ||2 /y∗

(4.5)

4.3 Summary

This chapter discussed the proposed training methodology. How the dataset was

cleaned, the labelling process by associating each input RGB image with its corre-

sponding ground truth depth map, the image transformations and normalization

applied after the formation of Image data bunch and how the hyper parameters

were initially selected and after tuning what were the final hyper parameters. The

testing methodology was also discussed by highlighting the evaluation metrics

used.

The coming chapter discusses the results obtained by using Resnet34 and Resnet50

as backbone architectures in Fastai’s Dynamic U-Net configuration and their com-

parison with the state of the art. Qualitative analysis is also presented.

Chapter 5

Results

The architectures used in this research study were trained on KITTI dataset for

the problem of depth prediction. As discussed earlier, Resnet34 and Resnet50 were

used as the backbone architectures in Unet configuration. Their performance was

evaluated using NVIDIA Tesla V100 (16 GB). As it can be seen from figure 3.6

and 3.7, by comparison, Resnet50 in dynamic Unet configuration is a very heavy

architecture with even up to 4000 feature channels in the lowest resolution. Resul-

tantly, it is memory intensive with greater training time and most importantly puts

a limitation on the batch size. These differences in performance and evaluation of

Resnet34 and Resnet50 are discussed in the following sub-sections:-

5.1 Resnet34

The Resnet34 architecture is comparatively light weight and can accommodate

even up to 64 images in a batch. However, a batch size of 32 images was used

to aid the training process. The learning rates were selected using the learning

rate finder and as described in section 4.2.3.8. While training of KITTI dataset

using Fastai’s dynamic Unet architecture with Resnet34 as backbone architecture,

it was observed that training of the network could not be achieved even after 50

epochs with different learning rates. It was observed that this was attributed to the

45

Results 46

last Sigmoid layer which added non-linearity to the predicted output, however, as

discussed in [14], the last layer needs to be linear for linear prediction of depth. For

the same purpose, as discussed in section 4.1.2, the last Sigmoid layer was removed

from the architecture and training was done with a learning rate of 0.001. It can

be seen from table 5.1, that the training loss kept on decreasing during the training

process. The qualitative results shown in the figures below also demonstrate the

successful training process where the network started to learn to predict depth as

perceptible from the predictions of 20-50 epochs. Some of the qualitative results

are shown in figures below 5.1-5.5:-

Table 5.1: Results of Training and Validation: Resnet34 in Fastai’s Dynamic
Unet Configuration trained on KITTI dataset.

Epochs Train loss Valid loss absErrorRel sqErrorRel RMSE SILog iRMSE

1 0.044507 0.023822 1.043539 0.277342 0.342754 4.078214 29.558901

2 0.020986 0.019410 0.878170 0.227262 0.329850 2.951670 24.883390

3 0.018777 0.018202 0.836591 0.213758 0.325253 2.545815 23.296675

4 0.018314 0.017954 0.824463 0.210398 0.323854 2.391117 22.986847

5 0.018113 0.017768 0.818567 0.213603 0.326852 2.611352 24.568414

6 0.017962 0.017683 0.814865 0.209689 0.324307 2.384638 24.082594

7 0.017943 0.017644 0.812557 0.209460 0.32446 2.328062 22.942423

8 0.017828 0.017569 0.805442 0.213079 0.327347 2.459449 22.548231

9 0.017814 0.017494 0.806299 0.209596 0.324967 2.306800 23.408339

10 0.017819 0.017467 0.810561 0.205911 0.322031 2.125575 21.208149

11 0.017767 0.017462 0.810819 0.206548 0.322444 2.162168 21.688185

12 0.017743 0.017458 0.812211 0.204394 0.320893 2.073627 21.176130

13 0.017124 0.016753 0.870199 0.191745 0.306157 1.606615 16.753599

14 0.016859 0.016596 0.903645 0.193347 0.302613 1.596483 16.753317

15 0.016801 0.016494 0.885137 0.194478 0.305597 1.660061 17.045897

16 0.016785 0.016462 0.892332 0.194795 0.304751 1.667236 17.223061

17 0.016735 0.016404 0.913681 0.194017 0.301243 1.590326 16.754614

18 0.016724 0.016340 0.888654 0.195166 0.305186 1.686453 17.299728

19 0.016643 0.016222 0.904936 0.914466 0.302158 1.631068 17.008587

20 0.016641 0.016149 0.900397 0.195866 0.303161 1.674783 17.247437

Results 47

The state of the art results shown on the KITTI dataset site and their compar-

ison with the results obtained from using Resnet34 as backbone architecture in

Dynamic U-Net architecture is shown in table 5.2:

Table 5.2: Comparison with State of the Art with Results of Resnet34 .

SILog sqErrorRel absErrorRel iRMSE

State of the Art [30] 11.12 (MPSD) 2.07 (MPSD) 8.78 (DL 61 - DORN) 11.56 (MPSD)

Ours (Resnet34) 1.674 0.195 0.900 17.247

It can be observed from the figure 5.1 that network after 10 epochs of training

has not yet learned to predict depths. This can be observed from the shadows of

objects seen in the predictions.

One can say that the network has learned some gray level values of the input

image.

For the same reason the network was trained again for next 10 epochs with the

same learning rate, results of which are shown in the figure 5.2.

It can be observed from the figure 5.2, that the network has now started to learn

something about the depth. It can be seen from the shading of depth values where

the objects closer to the camera seems to be darker than those farther away.

The network was trained again for next 30 epochs in 10 epochs cycles. The results

of 30, 40 and 50 epochs, respectively, are shown in the figures 5.3-5.5.

Furthermore, it can be observed from the figures shown below, that the difference

in the qualitative results after 30 epochs is very small.

However, the predictions are more refined after 50 epochs than that obtained after

30 epochs. The training was stopped after 50 epochs and model was saved.

Results 48

Figure 5.1: Resnet34 Results (10 epochs) in Dynamic Unet Configuration
(without sigmoid layer) From Left to Right: (a) Original RGB image, (b) The
Prediction on Validation/Test Set Images (c) Raw LiDAR Scan Data (used for

training as GT).

Results 49

Figure 5.2: Resnet34 Results (20 epochs) in Dynamic Unet Configuration
(without sigmoid layer) From Left to Right: (a) Original RGB image, (b) The
Prediction on Validation/Test Set Images (c) Raw LiDAR Scan Data (used for

training as GT).

Results 50

Figure 5.3: Resnet34 Results (30 epochs) in Dynamic Unet Configuration
(without sigmoid layer) From Left to Right: (a) Original RGB image, (b) The
Prediction on Validation/Test Set Images (c) Raw LiDAR Scan Data (used for

training as GT).

Results 51

Figure 5.4: Resnet34 Results (40 epochs) in Dynamic Unet Configuration
(without sigmoid layer) From Left to Right: (a) Original RGB image, (b) The
Prediction on Validation/Test Set Images (c) Raw LiDAR Scan Data (used for

training as GT).

Results 52

Figure 5.5: Resnet34 Results (50 epochs) in Dynamic Unet Configuration
(without sigmoid layer) From Left to Right: (a) Original RGB image, (b) The
Prediction on Validation/Test Set Images (c) Raw LiDAR Scan Data (used for

training as GT).

Results 53

It can be observed from the figures shown above, that the difference in the qual-

itative results after 30 epochs is very small. However, the predictions are more

refined after 50 epochs than that obtained after 30 epochs. The training was

stopped after 50 epochs and model was saved.

5.2 Resnet50

The Resnet50 architecture is computationally heavy (approximately 8.5 times

heavier than Resnet34) and is quite memory intensive. For the same reason a

batch size of 8 was selected with input images cropped to sizes of 224 x 224

each. For setting the hyper-parameters, same procedure was followed as done

with Resnet34.

While training of KITTI dataset using Resnet50, it was observed that the quali-

tative results of Resnet50 were more promising than that of Resnet34. The qual-

itative and quantitative results of Resnet50 obtained after first 10 epochs are

comparable with those obtained after 50 epochs using Resnet34.

This can be seen from Table 5.2 and figures shown below:- There is a mark dif-

ference in performance when comparing qualitative results of Resnet34 with those

obtained from Resnet50. Due to the deeper architecture of Resnet50, the qual-

itative results obtained from it are very fine and very closely resemble with the

original ground truth images.

The state of the art results shown on the KITTI dataset site and their compar-

ison with the results obtained from using Resnet50 as backbone architecture in

Dynamic U-Net architecture is shown in table 5.3.

Table 5.3: Comparison with State of the Art with Results of Resnet50 .

SILog sqErrorRel absErrorRel iRMSE

State of the Art [30] 11.12 (MPSD) 2.07 (MPSD) 8.78 (DL 61 - DORN) 11.56 (MPSD)

Ours (Resnet50) 1.618 0.195 0.923 17.105

Results 54

Table 5.4: Results of Training and Validation: Resnet50 in Fastai’s Dynamic
Unet Configuration trained on KITTI dataset.

Epochs Train loss Valid loss absErrorRel sqErrorRel RMSE SILog iRMSE

1 0.016905 0.016666 0.880358 0.197651 0.308287 1.826330 18.151844

2 0.016874 0.016575 0.841671 0.198997 0.313791 1.879078 18.368332

3 0.016816 0.016360 0.904865 0.194935 0.302883 1.653086 16.945129

4 0.016727 0.016310 0.877334 0.196853 0.307284 1.765261 17.616001

5 0.016692 0.016163 0.904092 0.194550 0.301884 1.659872 17.038559

6 0.016627 0.016055 0.926666 0.197939 0.299499 1.656190 17.084084

7 0.016432 0.016028 0.894410 0.196713 0.303381 1.700606 17.255571

8 0.016531 0.016037 0.915216 0.201022 0.301724 1.735559 17.467339

9 0.016391 0.015777 0.910926 0.197853 0.300076 1.698460 17.454256

10 0.016351 0.015655 0.921312 0.197711 0.297320 1.656444 17.200312

11 0.016241 0.015677 0.914367 0.196569 0.297961 1.647794 17.209614

12 0.016222 0.015638 0.922395 0.197257 0.296910 1.636623 17.167606

13 0.016291 0.015652 0.923523 0.199488 0.297493 1.648013 17.248308

14 0.016138 0.015719 0.927439 0.197951 0.296691 1.624606 17.063349

15 0.016265 0.015654 0.930718 0.199987 0.296829 1.666598 17.361515

16 0.016108 0.015718 0.918306 0.204088 0.301175 1.798275 18.290274

17 0.016156 0.015698 0.926051 0.194696 0.296157 1.574602 16.798025

18 0.016135 0.015591 0.916005 0.199595 0.298452 1.703840 17.644588

19 0.016152 0.015486 0.932137 0.197486 0.294307 1.618911 17.127268

20 0.016140 0.015452 0.923136 0.195136 0.294110 1.618750 17.105338

Results 55

Figure 5.6: Resnet50 Results (10 epochs) in Dynamic Unet Configuration
(without sigmoid layer) From Left to Right: (a) Original RGB image, (b) The
Prediction on Validation/Test Set Images (c) Raw LiDAR Scan Data (used for

training as GT).

Results 56

Figure 5.7: Resnet50 Results (10 epochs) in Dynamic Unet Configuration
(without sigmoid layer)From Left to Right: (a) Original RGB image, (b) The
Prediction on Validation/Test Set Images (c) Raw LiDAR Scan Data (used for

training as GT).

5.3 Comparison with Different Architectures

SILog (Scale Invariant Logarithmic Error) is considered as the main distinguishing

metric when comparing results of different methods. The SILog calculated on the

validation set using the approach mentioned in this thesis, came to be very low

when comparing it with the state of the art (mentioned on the leader board of

KITTI, as seen in Table 5.2). However, the results mentioned in Table 5.2 were

evaluated on the test set by team managing KITTI dataset, nevertheless, it can

Results 57

be assumed that the same high quality results can be achieved on the test set by

the approach mentioned in this research study.

Table 5.5: Leader Board for KITTI Data Set for Depth Prediction: Ranking
Methods from Top to Bottom Based on the SILog Error Metric.

Method SILog sqErrorRel absErrorRel iRMSE Runtime
DeepLab 10.80 2.19 8.94 11.77 0.1 s
MPSD 11.12 2.07 8.99 11.56 0.1 s
GSM 11.23 2.13 8.88 12.65 0.06 s
siit 11.50 2.30 9.04 12.33 0.02 s

GSM 11.56 2.25 8.99 12.44 0.05 s
LCI 11.59 2.21 9.09 12.18 0.03 s

BANet 11.61 2.29 9.38 12.23 0.04 s
BTS 11.67 2.21 9.04 12.23 0.06 s

AcED 11.70 2.45 9.54 12.51 0.5 s
DL 61 (DORN) 11.77 2.23 8.78 12.98 0.5 s

RefinedMPL 11.80 2.31 10.09 13.39 0.05 s
BiNet-SOC 11.83 2.66 10.12 12.79 0.04 s

BTS-256 12.05 2.43 9.39 13.11 0.1
AcED 12.27 2.48 9.55 12.91 0.5 s

DL SORD SL 12.39 2.49 10.10 13.48 0.8 s
VNL 12.65 2.46 10.15 13.02 0.5 s

DS-SIDENet ROB 12.86 2.87 10.03 14.40 0.35 s
DL SORD SQ 13.00 2.95 10.38 13.78 0.88 s

PAP 13.08 2.72 10.27 13.95 0.18 s
VGG16-UNet 13.41 2.86 10.60 15.06 0.16 s
DORN ROB 13.53 3.06 10.35 15.96 2 s

SSDE 14.45 3.60 11.47 15.52 0.1 s
DABC ROB 14.49 4.08 12.72 15.53 0.7 s

SDNet 14.68 3.90 12.31 15.96 0.2 s
APMoE base ROB 14.74 3.88 11.74 15.63 0.2 s

FIS-Nets 14.76 3.56 11.41 15.74 0.06 s
MonoDeMo 14.84 4.04 12.28 15.69 0.01 s

CSWS E ROB 14.85 3.48 11.84 16.38 0.2 s
HBC 15.18 3.79 12.33 17.86 0.05 s

SGDepth 15.30 5.00 13.29 15.80 0.1 s
semiDepth 15.34 4.20 11.73 16.66 0.02 s
DHGRL 15.47 4.04 12.52 15.72 0.2 s

AM-mono 15.77 67.30 81.95 499.22 0.02 s
Mono-pad-net 15.87 4.60 13.10 16.98 0.1 s
FCRN ROB 15.93 4.06 12.10 16.51 0.2 s
MultiDepth 16.05 3.89 13.82 18.21 0.01 s

AI Mono Tech. 17.21 6.98 13.60 16.80 0.04 s
Modu selfdriving ROB 17.54 7.69 14.61 17.77 0.1 s

LSIM 17.92 6.88 14.04 17.62 0.08 s
BESEG 23.91 24.14 27.83 30.52 3 s

RVGNet ROB 37.71 10.66 23.39 62.48 0.3 s
RVGNet 40.91 13.35 28.03 44.54 0.3 s

Results 58

5.4 Analysis

5.4.1 Accuracy

In terms of validation metrics, Dynamic U-Net architecture achieved far better

results than contemporary heavier architectures as shown in table 5.1 and table 5.3.

This shows the effectiveness of Dynamic U-Net architecture in depth regression

task. This can also be attributed to the best training approaches adopted in this

research work.

5.4.2 Computational Time

The Computational Time for Resnet34 in U-Net Configuration for 1 epoch on

NVIDIA TESLA V100 for a subset of KITTI dataset (approximately 6k images)

was 1 minute and 46 seconds, for images of size 224 x 224 and batch size of 32.

The Computational Time for Resnet50 in U-Net Configuration for 1 Epoch on

NVIDIA TESLA V100 for a subset of KITTI dataset (approximately 6k images)

was 11 minute and 54 seconds, for images of size 224 x 224 and batch size of 8.

5.4.3 Comparison of Resnet34 and Resnet50 in Terms of

Training Cycles

By comparing the figure 5.5 (qualitative results of Resnet34 after 50 Epochs of

training) with figure 5.6 (qualitative results of Resnet50 after 10 Epochs of train-

ing), it can be said that Resnet50 gives superior results (after 10 Epochs of its

training) than Resnet34 even after 50 Epochs of its training. This shows that the

shallower the network the more training cycles it requires.

5.4.4 Limitation

Some of the limitations of this research work are given below:

Results 59

• The sparsity of LiDAR’s ground truth data is one of the main limitations of

monocular depth perception as holes in the ground truth data are replicated

in the predictions. Which ultimately gives error in depth filling.

• The fastest GPU (NVIDIA TESLA V100) was utilized (rented from floydhub

cloud GPU platform) to perform training on KITTI dataset. Although still it

was infeasible to utilize full image resolution for training of data. The original

image size of KITTI dataset was 370 x 1252 which was down sampled to 224

x 224 to avoid longer training cycles, as for only a subset of KITTI dataset

(approximately 6k images), the computational time for full sized images for

Resnet34 was approximately 18 minutes and that of Resnet50 was 1 hour for

1 Epoch. This size of 224 x 224 is chosen because it is thought to be the ideal

size for many deep learning applications by the deep learning practitioners

[21]. Secondly, the intuition behind selecting this size of images was that, by

down sampling the original resolution of images to half, gives a resolution

of 185 x 626 which is still not computationally feasible. By further down

sampling it gives a resolution of 92 x 313. But this resolution is not suitable

at all in terms of loss of features in resolution of 1st dimension i.e. ‘92’ and it

is considered by all deep learning practitioners, that resolution of dimensions

below 128 behave strangely [21] and should never be selected

• One of the limitations of the original Fastai’s Dynamic U-Net was the pres-

ence of last Sigmoid Layer in Dynamic U-NET architecture, as it was de-

signed for classification tasks and does not support image to image regression

tasks as highlighted in the previous sections, so the same was removed.

5.5 Summary

In Chapter 5, both the qualitative and quantitative results of Dynamic U-Net with

Resnet34 and Resnet50 as backbone architecture on a subset of KITTI dataset

(with approximately 6k images) were presented. Comparison of Dynamic U-Net

architecture with Resnet34 as backbone architecture and Resnet50 as backbone

architecture was made with each other and as well as with contemporary state of

the art.

Chapter 6

Conclusion and Future work

6.1 Conclusion

Depth estimation is one of the fundamental ambiguities in the field of computer

vision. Currently, a great focus has been shifted on monocular depth perception,

which is an inherently ill-posed problem. Usually machine learning and especially

deep learning techniques are used to address this problem. Supervised machine

learning has proved to give superior results employing a full image regression

scheme. Such approaches usually require a computationally heavy architecture.

Which brings us to one of the main challenges in the field of deep learning, i.e.

to design deeper architectures with low computational cost and that can work

equally well on small training sets. U-Net architecture is one in this case which

was originally designed for medical image segmentation/classification tasks, where

usually in many cases, very less training data exists.

For the same reason Fastai’s Dynamic U-Net architecture was used for the first

time for monocular depth perception on KITTI Dataset. It proved to be a very

good choice after tailoring it for the depth regression task. Furthermore, using the

Fastai library provided excellent support for the best training approaches adopted

by competition winning deep learning practitioners. These approaches proved to

60

Conclusion and Future work 61

be pivotal in achieving high accuracy, especially the learning rate finder which

helped to select the optimum learning rates in different training cycles and dis-

criminative learning rates which helped to select the optimum learning rates for

different sets of layers of the architecture.

Taking the case of Resnet34 as backbone architecture in Dynamic U-Net, it proved

to be a deeper architecture with far lesser parameters than contemporary state of

the art heavy architectures and yet provided better results.

Furthermore, for the task of depth regression, longer training cycles are required

as compared to the requirement in the classification tasks. Moreover, the shallower

the network, more is the length of training cycles. Larger values of momentum

are also required in the task of depth regression. The results obtained show the

effectiveness of approach followed in this thesis.

6.2 Future Work

The work presented in this thesis provides a solid base to incorporate and examine

in a U net configuration, other state of the art architectures designed for classi-

fication (E Net, Dense Net, Inception Net etc.), for the task of depth prediction.

The same technique with an addition of a guidance network can also be used for

the task of depth completion. Depth completion can then serve as a preliminary

step towards the final depth prediction task on filled LIDAR data rather than a

sparse one.

Bibliography

[1] A. Saxena, S. H. Chung, and A. Y. Ng, “Learning depth fromsingle monocular

images,” in Neural Information Processing systems (NIPS), vol. 18, 2005.

[2] D. Cheda, “Monocular depth cues in computer applicaation,” Ph.D. disser-

tation, PhD Thesis, 2012.

[3] Y. Kuznietsov, J. Stuckler, and B. Leibe, “Semi-supervised deep learning for

monocular depth map prediction,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2017, pp. 6647–6655.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no.

7553, pp. 436–444, 2015.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[6] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for

semantic segmentation,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2015, pp. 3431–3440.

[7] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[8] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual

recognition challenge,” International journal of computer vision, vol. 115,

no. 3, pp. 211–252, 2015.

62

Bibliography 63

[9] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,

U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban

scene understanding,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016, pp. 3213–3223.

[10] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation and

support inference from rgbd images,” in European conference on computer

vision. Springer, 2012, pp. 746–760.

[11] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional

networks,” in European conference on computer vision. Springer, 2014, pp.

818–833.

[12] F. Khan, S. Salahuddin, and H. Javidnia, “Deep learning-based monocular

depth estimation methods—a state-of-the-art review,” Sensors, vol. 20, no. 8,

p. 2272, 2020.

[13] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a single

image using a multi-scale deep network,” in Advances in neural information

processing systems, 2014, pp. 2366–2374.

[14] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic

labels with a common multi-scale convolutional architecture,” in Proceedings

of the IEEE international conference on computer vision, 2015, pp. 2650–

2658.

[15] R. Garg, V. K. Bg, G. Carneiro, and I. Reid, “Unsupervised cnn for single

view depth estimation: Geometry to the rescue,” in European conference on

computer vision. Springer, 2016, pp. 740–756.

[16] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular

depth estimation with left-right consistency,” in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, 2017, pp. 270–279.

Bibliography 64

[17] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, “Deeper

depth prediction with fully convolutional residual networks,” in 2016 Fourth

international conference on 3D vision (3DV). IEEE, 2016, pp. 239–248.

[18] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convo-

lutional encoder-decoder architecture for image segmentation,” IEEE trans-

actions on pattern analysis and machine intelligence, vol. 39, no. 12, pp.

2481–2495, 2017.

[19] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,

“Deeplab: Semantic image segmentation with deep convolutional nets, atrous

convolution, and fully connected crfs,” IEEE transactions on pattern analysis

and machine intelligence, vol. 40, no. 4, pp. 834–848, 2017.

[20] H. Zhang, Y. N. Dauphin, and T. Ma, “Fixup initialization: Residual learning

without normalization,” arXiv preprint arXiv:1901.09321, 2019.

[21] Fastai. Accessed on 06 Jan 2020.[Online]. Available: http://www.fast.ai

[22] D. Wofk, F. Ma, T.-J. Yang, S. Karaman, and V. Sze, “Fastdepth: Fast

monocular depth estimation on embedded systems,” in 2019 International

Conference on Robotics and Automation (ICRA). IEEE, 2019, pp. 6101–

6108.

[23] Technologyreview. Accessed on 06 Jan 2020.[Online].

Available: http://www.technologyreview.com/2018/08/10/141098/

small-team-of-aicoders-beats-googles-code

[24] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks

for biomedical image segmentation,” in International Conference on Medical

image computing and computer-assisted intervention. Springer, 2015, pp.

234–241.

[25] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolu-

tional neural networks,” arXiv preprint arXiv:1905.11946, 2019.

http://www.fast.ai
http://www.technologyreview.com/2018/08/10/141098/small-team-of-aicoders-beats-googles-code
http://www.technologyreview.com/2018/08/10/141098/small-team-of-aicoders-beats-googles-code

Bibliography 65

[26] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The

kitti dataset,” The International Journal of Robotics Research, vol. 32, no. 11,

pp. 1231–1237, 2013.

[27] P. Isola, J. Xiao, A. Torralba, and A. Oliva, “What makes an image memo-

rable?” in CVPR 2011. IEEE, 2011, pp. 145–152.

[28] K. S. Chan, “Multiview monocular depth estimation using unsupervised

learning methods,” Ph.D. dissertation, Massachusetts Institute of Technol-

ogy, 2018.

[29] M. Ribo, A. Pinz, and A. L. Fuhrmann, “A new optical tracking system

for virtual and augmented reality applications,” in IMTC 2001. Proceedings

of the 18th IEEE Instrumentation and Measurement Technology Conference.

Rediscovering Measurement in the Age of Informatics (Cat. No. 01CH 37188),

vol. 3. IEEE, 2001, pp. 1932–1936.

[30] T.-T. Lin, Y.-K. Hsiung, G.-L. Hong, H.-K. Chang, and F.-M. Lu, “Develop-

ment of a virtual reality gis using stereo vision,” Computers and electronics

in agriculture, vol. 63, no. 1, pp. 38–48, 2008.

[31] S. Livatino, G. Muscato, and F. Privitera, “Stereo viewing and virtual real-

ity technologies in mobile robot teleguide,” IEEE Transactions on Robotics,

vol. 25, no. 6, pp. 1343–1355, 2009.

[32] D. Murray and J. J. Little, “Using real-time stereo vision for mobile robot

navigation,” autonomous robots, vol. 8, no. 2, pp. 161–171, 2000.

[33] S. B. Goldberg, M. W. Maimone, and L. Matthies, “Stereo vision and

rover navigation software for planetary exploration,” in Proceedings, IEEE

aerospace conference, vol. 5. IEEE, 2002, pp. 5–5.

[34] D. Brescianini, M. Hehn, and R. D’Andrea, “Quadrocopter pole acrobatics,”

in 2013 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems. IEEE, 2013, pp. 3472–3479.

Bibliography 66

[35] T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka, “A stereo machine

for video-rate dense depth mapping and its new applications,” in Proceedings

CVPR IEEE Computer Society Conference on Computer Vision and Pattern

Recognition. IEEE, 1996, pp. 196–202.

[36] O. D. Faugeras and F. Lustman, “Motion and structure from motion in a

piecewise planar environment,” International Journal of Pattern Recognition

and Artificial Intelligence, vol. 2, no. 03, pp. 485–508, 1988.

[37] J. J. Koenderink and A. J. Van Doorn, “Affine structure from motion,” JOSA

A, vol. 8, no. 2, pp. 377–385, 1991.

[38] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, 2016, pp. 4104–4113.

[39] R. Ranftl, V. Vineet, Q. Chen, and V. Koltun, “Dense monocular depth

estimation in complex dynamic scenes,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2016, pp. 4058–4066.

[40] S. Zingg, D. Scaramuzza, S. Weiss, and R. Siegwart, “Mav navigation through

indoor corridors using optical flow,” in 2010 IEEE International Conference

on Robotics and Automation. IEEE, 2010, pp. 3361–3368.

[41] F. Kendoul, I. Fantoni, and K. Nonami, “Optic flow-based vision system for

autonomous 3d localization and control of small aerial vehicles,” Robotics and

autonomous systems, vol. 57, no. 6-7, pp. 591–602, 2009.

[42] B. Herisse, F.-X. Russotto, T. Hamel, and R. Mahony, “Hovering flight and

vertical landing control of a vtol unmanned aerial vehicle using optical flow,”

in 2008 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems. IEEE, 2008, pp. 801–806.

[43] J. Thatte, J.-B. Boin, H. Lakshman, and B. Girod, “Depth augmented stereo

panorama for cinematic virtual reality with head-motion parallax,” in 2016

Bibliography 67

IEEE International Conference on Multimedia and Expo (ICME). IEEE,

2016, pp. 1–6.

[44] B. Luo, F. Xu, C. Richardt, and J.-H. Yong, “Parallax360: stereoscopic 360

scene representation for head-motion parallax,” IEEE transactions on Visu-

alization and Computer Graphics, vol. 24, no. 4, pp. 1545–1553, 2018.

[45] M. F. Bradshaw, A. D. Parton, and A. Glennerster, “The task-dependent

use of binocular disparity and motion parallax information,” Vision research,

vol. 40, no. 27, pp. 3725–3734, 2000.

[46] W. N. Klarquist, W. S. Geisler, and A. C. Bovik, “Maximum-likelihood depth-

from-defocus for active vision,” in Proceedings 1995 IEEE/RSJ International

Conference on Intelligent Robots and Systems. Human Robot Interaction and

Cooperative Robots, vol. 3. IEEE, 1995, pp. 374–379.

[47] V. P. Namboodiri and S. Chaudhuri, “On defocus, diffusion and depth esti-

mation,” Pattern Recognition Letters, vol. 28, no. 3, pp. 311–319, 2007.

[48] O. Ghita and P. F. Whelan, “A video-rate range sensor based on depth from

defocus,” Optics & Laser Technology, vol. 33, no. 3, pp. 167–176, 2001.

[49] A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from

a conventional camera with a coded aperture,” ACM transactions on graphics

(TOG), vol. 26, no. 3, pp. 70–es, 2007.

[50] torres, “Comparison of the snapdragon flight realsense andzed stereo cam-

eras,” 2017.

[51] Y. Cao, Z. Wu, and C. Shen, “Estimating depth from monocular images as

classification using deep fully convolutional residual networks,” IEEE Trans-

actions on Circuits and Systems for Video Technology, vol. 28, no. 11, pp.

3174–3182, 2017.

[52] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving?

the kitti vision benchmark suite,” in 2012 IEEE Conference on Computer

Vision and Pattern Recognition. IEEE, 2012, pp. 3354–3361.

Bibliography 68

[53] L. Ladicky, J. Shi, and M. Pollefeys, “Pulling things out of perspective,” in

Proceedings of the IEEE conference on computer vision and pattern recogni-

tion, 2014, pp. 89–96.

[54] A. Saxena, M. Sun, and A. Y. Ng, “Make3d: Learning 3d scene structure

from a single still image,” IEEE transactions on pattern analysis and machine

intelligence, vol. 31, no. 5, pp. 824–840, 2008.

[55] I. Alhashim and P. Wonka, “High quality monocular depth estimation via

transfer learning,” arXiv preprint arXiv:1812.11941, 2018.

[56] J. West, D. Ventura, and S. Warnick, “Spring research presentation: A theo-

retical foundation for inductive transfer,” Brigham Young University, College

of Physical and Mathematical Sciences, vol. 1, no. 08, 2007.

[57] I. L. S. V. R. Challenge, “Available online: http://www. image-net. org/chal-

lenges,” LSVRC/(accessed on 06 Aug 2020), 2014.

[58] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised learning of

depth and ego-motion from video,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2017, pp. 1851–1858.

[59] D. Scaramuzza, F. Fraundorfer, M. Pollefeys, and R. Siegwart, “Absolute

scale in structure from motion from a single vehicle mounted camera by ex-

ploiting nonholonomic constraints,” in 2009 IEEE 12th International Confer-

ence on Computer Vision. IEEE, 2009, pp. 1413–1419.

[60] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg, A. Dosovitskiy, and

T. Brox, “Demon: Depth and motion network for learning monocular stereo,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2017, pp. 5038–5047.

[61] L. N. Smith, “Cyclical learning rates for training neural networks,” in 2017

IEEE Winter Conference on Applications of Computer Vision (WACV).

IEEE, 2017, pp. 464–472.

Bibliography 69

[62] A. Vedaldi, “Cats and dogs,” in Proceedings of the 2012 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2012, pp. 3498–3505.

Appendix A

Installation of Required

Frameworks

A.1 Installation of Anaconda Python3

As a 1st step, we need to download Python. We selected the latest version

of Python3 (Python 3.7) for development. Python is a programming language

but we want an Integrated Development Environment to use it. We have se-

lected the Anaconda distribution for Python3 for subject purpose (as mostly

used world-wide). The Anaconda distribution not only downloads and install

Python but it further has different Integrated Development Environments (IDEs)

including Jupyter Notebooks, which is a Web-based Interactive Computing Note-

book Environment. We will further use the Jupyter Notebooks for development

in our application. The Anaconda distribution for Python can be found at:

‘https://www.anaconda.com/products/individual’. After clicking on the required

distribution (Windows, 64-bit Operating system and Python 3.7 in our case), the

download process of its executable file will start as shown in the figure below:

70

Installation of Required Frameworks 71

Figure A.1: 64-Bit Graphical Installer of Anaconda Python3.

The Anaconda Python3 can then be installed by running the downloaded exe-

cutable file of Anaconda distribution.

A.2 Installation of Pytorch, Torchvision , CU-

DA/ cuDNN Drivers for GPU

Pytorch can be installed from https://pytorch.org/ . After selecting the required

preferences for your system (with GPU) as shown in the following figure, you

can copy the install command as highlighted in the red box and run in the Ana-

conda prompt (Anaconda prompt should be run from startup menu as ‘Run as

Administrator’, after right clicking its option).

Figure A.2: Conda Install Pytorch Torchvision Cudatoolkit=10.2.

Installation of Required Frameworks 72

We were using Windows and selected ‘conda’ as the package manager. We also

selected the latest CUDA drivers. For our case, the command ‘conda install py-

torch torchvision cudatoolkit=10.2 –c pytorch’, will automatically download the

latest torchvision module required for computer vision applications in deep learn-

ing. It will also automatically download all the required CUDA drivers for use

of GPU and there will not be any need to go to Nvidia site and separately in-

stall CUDA/cuDNN drivers as per your GPU requirement. It is be NOTED

that to successfully run deep learning platforms, your GPU compute capabil-

ity should be greater than 3 (as highlighted by Andrew Ng, in his course of

deep learning on coursera). The compute capability of GPUs can be found at

‘https : //developer.nvidia.com/cuda − gpuscompute′. For example, for finding

the compute capability of GeForce and Titan GPUs, we will go to the above

mentioned site and click on the option of ‘CUDA-Enabled GeForce and Titan

Products’. It will display following results:

Figure A.3: CUDA-Enabled GeForce and Titan Products.

If you do not have a GPU and want to download Pytorch/ torchvision for CPU

only, then select ‘None’ in the ‘CUDA’ option (from https://pytorch.org/) , as

shown in the following figure:

Installation of Required Frameworks 73

Figure A.4: Pytorch Installer for CPU only.

Running the install command ‘conda install pytorch torchvision cpuonly –c py-

torch’, in the Anaconda prompt will download and install the desired Pytorch

stable version for ‘cpu only’. After downloading Pytorch / torchvision, we are now

ready to install the Fastai library, which is built on Pytorch.

A.3 Installation of Fastai

The detailed instructions in this regards can be found by following the fastai

installation guide at ‘https://docs.fast.ai/install.html’. One can use the desired

package manager (pip or conda) for its installation. For example, running the

following command in the Anaconda prompt will do the job for us: pip install

fastai This is shown in the following figure:

Figure A.5: Fastai Installation using Pip as Package Manager.

After installing fastai, it is necessary to RESTART the PC, in order to let your

PC find fastai library. After running the Anaconda Navigator (as Administrator)

Installation of Required Frameworks 74

and Launching the Jupyter Notebook application in the Anaconda Navigator, one

can then navigate through the PC and find the fastai course folder, as shown in

the figure below:

Figure A.6: Navigating Fastai Toolbox for Use in IDE.

The course folder can be downloaded by following the instructions found at ‘https :

//course.fast.ai/′. If you have saved the fastai course folder on the desktop,

then fastai tutorial lesson can be opened in Jupyter notebook by following these

folder locations: ‘http : //localhost : 8888/notebooks/Desktop/fastai/course −

v3/nbs/dl1/00notebooktutorial.ipynb
′. It is good for a start-up and one can then

build deep learning models and start the Training process as per the instructions

in section 5.2.3 Training in fastai.

A.4 Installation and Import of other Required

Modules

Before proceeding further, it is necessary to download following modules from the

start using either of the package manager (pip or conda), in the Anaconda Prompt:

• latest version of numpy (using either pip or conda).

• latest version of matplotlib (using either pip or conda).

• pypardiso (using conda only).

• cv2 (using conda only).

Installation of Required Frameworks 75

• scipy (using either pip or conda).

• skimage (using either pip or conda).

• scikit.learn (using either pip or conda)

It is better that the above mentioned modules should be imported in python from

the very start as follows:

import numpy as np

import matplotlib

import matplotlib.pyplot as plt

from fastai import *

from fastai.vision import *

from PIL import Image

from fastai.callbacks.hooks import *

from fastai.utils.mem import *

from fastai.basics import *

import torch

from torch import nn

import cv2

from pypardiso import spsolve

import scipy

import skimage

import imageio

Appendix B

Labeling Function for KITTI

Dataset

Labelling function for KITTI Dataset

defLabelling − Function(x) :

head−tail−1 = os.path.split(x);Tail−0000000005.pngparent−1 = x.parent; ; ; incl−

dataparent− 1 = head− tail − 1[0]

head − tail − 2 = os.path.split(parent − 1);Tail − dataparent − 2 = parent −

1.parent; ; ; incl − image− 02parent− 2 = head− tail − 2[0]

head−tail−3 = os.path.split(parent−2);Tail−image−02parent−3 = parent−

2.parent; ; ; incl−2011−09−26−drive−0001−syncparent−3 = head−tail−3[0]

headtail − 4 = os.path.split(parent− 3);Tail − 2011− 09− 26− drive− 0001−

syncparent−4 = parent−3.parent; ; ; incl–trainingparent−4 = head−tail−4[0]

head− tail − 5 = os.path.split(parent− 4);Tail–trainingparent− 5 = parent−

4.parent; ; ; incl–KITTI −Datasetparent− 5 = head− tail − 5[0]

ifhead− tail − 5[1] == ”training”andhead− tail − 3[1] == ”image− 02” :

child− 4 = os.path.join(parent− 5, ”Y − training”, ””)

76

Labelling Function for KITTI Dataset 77

child− 3 = os.path.join(child− 4, head− tail − 4[1], ””)

child− 2 = os.path.join(child− 3, ”proj − depth”, ””)

child− 1 = os.path.join(child− 2, ”velodyne− raw”, ””)

child− 0 = os.path.join(child− 1, head− tail − 3[1])

child = os.path.join(child− 0, head− tail − 1[1])

final − path = child

elifhead− tail5[1] == ”training”andhead− tail − 3[1] == ”image− 03” :

child− 4 = os.path.join(parent− 5, ”Y − training”, ””)

child− 3 = os.path.join(child− 4, head− tail − 4[1], ””)

child− 2 = os.path.join(child− 3, ”proj − depth”, ””)

child− 1 = os.path.join(child− 2, ”velodyne− raw”, ””)

child− 0 = os.path.join(child− 1, head− tail − 3[1])

child = os.path.join(child− 0, head− tail − 1[1])

final − path = child

ifhead− tail − 5[1] == ”validation”andhead− tail − 3[1] == ”image− 02” :

child− 4 = os.path.join(parent− 5, ”Y − validation”, ””)

child− 3 = os.path.join(child− 4, head− tail − 4[1], ””)

child− 2 = os.path.join(child− 3, ”proj − depth”, ””)

child− 1 = os.path.join(child− 2, ”velodyne− raw”, ””)

child− 0 = os.path.join(child− 1, head− tail − 3[1])

child = os.path.join(child− 0, head− tail − 1[1])

final − path = child

Labelling Function for KITTI Dataset 78

elifhead− tail − 5[1] == ”validation”andhead− tail − 3[1] == ”image− 03” :

child− 4 = os.path.join(parent− 5, ”Y − validation”, ””)

child− 3 = os.path.join(child− 4, head− tail − 4[1], ””)

child− 2 = os.path.join(child− 3, ”proj − depth”, ””)

child− 1 = os.path.join(child− 2, ”velodyne− raw”, ””)

child− 0 = os.path.join(child− 1, head− tail − 3[1])

child = os.path.join(child− 0, head− tail − 1[1])

final − path = child

returnfinal − path

	Author's Declaration
	Plagiarism Undertaking
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Overview
	1.2 From Stereo to Monocular Vision Based Depth Estimation
	1.3 Deep Convolutions Neural Networks (DCNNs)
	1.4 Research Challenges
	1.4.1 Minimal Equipment and Time for Training
	1.4.2 Light Architectures
	1.4.3 Real Time Performance on Cost Effective Platforms
	1.4.4 Overcoming the Limitation of Popular Data Sets with Sparse Data for Supervised Learning

	1.5 Research Objective
	1.6 Contributions
	1.7 Thesis Organization

	2 Literature Review
	2.1 Binocular Vision Approaches
	2.1.1 Ambiguity
	2.1.2 Occlusion
	2.1.3 Short Range
	2.1.4 High Computational Cost
	2.1.5 Hardware Limitations

	2.2 Monocular Vision Approaches
	2.2.1 Supervised Machine Learning
	2.2.2 Unsupervised/Semi-Supervised Machine Learning

	2.3 Research Gap
	2.4 Problem Statement
	2.5 Summary

	3 Dataset,Libraries and Architecture Used
	3.1 Dataset
	3.1.1 KITTI

	3.2 Fastai Library and Pytorch
	3.3 Best Training Practices in Fastai
	3.3.1 One Cycle Training – Freezing/Unfreezing Layers
	3.3.2 Learning Rate Finder and Discriminative Learning Rates

	3.4 U-Net Architecture
	3.4.1 Encoder-Decoder Architecture
	3.4.2 Resnet-34
	3.4.3 Resnet-50
	3.4.4 Fastai's Implementation of Dynamic U-Net

	3.5 Summary

	4 Implementation Methodology
	4.1 Proposed Methodology
	4.1.1 Organizing the Dataset/Cleaning of Data
	4.1.2 Training in Fastai
	4.1.2.1 Creation of Item List
	4.1.2.2 Labelling Function for KITTI Dataset
	4.1.2.3 Creation of Image Data Bunch
	4.1.2.4 Data Augmentation
	4.1.2.5 Creation of U-Net-Learner/Model for Training
	4.1.2.6 Applying Transfer Learning
	4.1.2.7 Training Metric/Loss Function
	4.1.2.8 Starting the Training – Fit One-Cycle
	4.1.2.9 Hyper Parameter Setting/Tuning

	4.2 Testing Methodology
	4.2.1 Evaluation Metrics

	4.3 Summary

	5 Results
	5.1 Resnet34
	5.2 Resnet50
	5.3 Comparison with Different Architectures
	5.4 Analysis
	5.4.1 Accuracy
	5.4.2 Computational Time
	5.4.3 Comparison of Resnet34 and Resnet50 in Terms of Training Cycles
	5.4.4 Limitation

	5.5 Summary

	6 Conclusion and Future work
	6.1 Conclusion
	6.2 Future Work

	A Installation of Required Frameworks
	A.1 Installation of Anaconda Python3
	A.2 Installation of Pytorch, Torchvision , CUDA/ cuDNN Drivers for GPU
	A.3 Installation of Fastai
	A.4 Installation and Import of other Required Modules

	B Labeling Function for KITTI Dataset

